83 research outputs found
Mobile Commerce and Applications: An Exploratory Study and Review
Mobile commerce is enabling the development of additional revenue streams for
organizations through the delivery of chargeable mobile services. According to
the European Information Technology Observatory, the total amount of revenue
generated by mobile commerce was reported to be less than {\pounds}9 million in
the United Kingdom in 2001. By 2005 this had, at least, doubled and more recent
industry forecasts project significant global growth in this area. Mobile
commerce creates a range of business opportunities and new revenue streams for
businesses across industry sectors via the deployment of innovative services,
applications and associated information content. This paper presents a review
of mobile commerce business models and their importance for the creation of
mobile commerce solutions.Comment: Journal of Computing online at
https://sites.google.com/site/journalofcomputing
Diffusion weighted image (DWI) findings in methanol intoxication
Methanol is a toxic substance with extremely devastating effects upon exposure. The case described suffered from such kind of poisoning. MRI brain demonstrated necrosis bilaterally in the Putamen areas which is a classic hallmark finding. Additional Diffusion weighted imaging showed abnormal signal bilaterally in the putamen areas along with Diffusion positive bilateral lesions (possibly infarctions) in both the frontal and occipital lobes that were not evident on MRI with or without contrast
Turnip (Brassica Rapus L.): a natural health tonic
In addition to basic nutrition, plant-based foods provide substantial amounts of bioactive compounds which deliver desirable health benefits. During the last decade, secondary metabolites, also known as phytochemicals, obtained from plants, have aroused special attention by researchers. Amongst such plants, the turnip contains a few valuable components which not only endorse health benefits but also provide healing properties. Various bioactive components, for example peroxidase, kaempferol, phenolic compounds, sulforaphane, organic acids, vitamin K, glucosinolates etc are highlighted in this manuscript. Likewise, numerous minerals, such as copper, manganese and calcium, and organic acids, such as sinapic and ferulic acids and their derivatives, found in different amounts in fresh greens and turnip roots, are also discussed briefly. The current paper is focused on the phenolic compounds, which act as beneficial compounds for human health and can be isolated from plant foods, especially turnip. Due to the presence of bioactive constituents, turnip imparts a positive role with respect to the hepatic injury caused by diabetes, high antioxidant activity and a good hepatoprotective role. The impact of environmental conditions and processing mechanisms on the phenolic compound composition of Brassica vegetables, with special reference to turnip, was also briefly discussed
Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers
The present study was conducted with the aim to investigate recombination between mungbean (female) and mashbean (male) interspecific crosses using molecular markers i.e., URP (Universal Rice Primers), RAPD (Random Amplified Polymorphic DNA) and SSR (Simple Sequence Repeats). As a first step parental screening was performed and polymorphic markers differentiating parent genotypes were identified. Recombinations were then confirmed through polymorphic DNA markers in many of the hybrids. The NM 2006 × Mash 88 was found to be most successful interspecific cross as many of true recombinants, confirmed by molecular markers, belonged to this cross combination. The SSR markers were more efficient in detecting genetic variability and recombinations with reference to specific chromosomes and particular loci, while SSR (RIS) and RAPD identified variability dispersed throughout the genome. The DNA based marker assisted approach provided evidence for genetic confirmation of mungbean and mashbean interspecific recombinants and escalated the authenticity of selection in mungbean improvement programme
Advances in pharmacogenomics: optimizing antiepileptic drug therapy for drug-resistant epilepsy
Epilepsy, a complex neurological disorder, is influenced by intricate interactions within cortical, hippocampal, or thalamocortical neuronal networks, presenting a genetically complex condition with non-Mendelian inheritance patterns. This complexity is underscored by the involvement of numerous “susceptibilities” or “modifier” genes, complicating the assessment of risk and therapy outcomes. A critical inquiry in epilepsy treatment involves understanding how genetic diversity impacts treatment strategies and efficacy. Pharmacogenomic advancements have elaborated the connection between genetic variants and antiseizure medication (ASM) safety and response, marking a shift towards precision medicine in epilepsy care. Notably, genetic screening for variants such as HLA-B*1502 and HLA-A*3101 has demonstrated significant efficacy in preventing severe hypersensitivity reactions, including toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS), particularly among specific ethnic populations. However, putting pharmacogenomic discoveries into clinical practice faces numerous challenges, including educational, legal, and economic barriers, emphasizing the need for broader acceptance and integration of pharmacogenomic data. This review synthesizes recent studies on pharmacogenomics in epilepsy, highlighting the current advances and prospects for personalizing epilepsy treatment through genetic insights, aiming to enhance ASM safety, reduce adverse effects, and improve treatment outcomes. Through a comprehensive examination of the genetic basis of epilepsy and its influence on pharmacotherapy, this review endeavors to contribute to the evolving landscape of precision medicine in epilepsy care, advocating for a more individualized and effective treatment approach
Potential of Functionalized Magnetite (Fe3O4) in Decontamination of Pathogenic Bacteria from Milk
Magnetite (Fe3O4) is getting popular due to its super-paramagnetic properties, high biocompatibility and lack of toxicity to humans. Magnetite (Fe3O4) nanoparticles have high surface energy thus these nanoparticles aggregate quickly. This aggregation strongly affects the efficiency of these nanoparticles. So these magnetite nanoparticles are coated with organic or inorganic substance to prevent aggregation. These coatings not only stabilize magnetic nanoparticles but can also be used for further functionalization. The aim of this study was to evaluate the efficiency of functionalized magnetite to remove pathogenic bacteria (E.coli and B.cereus) from milk considering binding capability of magnetite with bacterial cell wall. Magnetite (Fe3O4) was prepared by co-precipitation method and subsequently functionalized with oleic acid (OA) and ethylene diamine (EDA). In present study role of magnetite (Fe3O4) and functionalized magnetite (EDA-Fe3O4, OA-Fe3O4) in removal of pathogenic bacteria (E.coli and B.cereus) from milk was investigated. The morphology of functionalized magnetite was determined by Scanning Electron microscopy (SEM). Their removal efficiency was studied based on time (10, 20 and 30 minutes). Concentration of uncoated magnetite (Fe3O4) and coated magnetite (EDA-Fe3O4, OA-Fe3O4) was fixed at 4mg/50mL. Magnetite was successfully synthesized in range of +/- 3nm. Highest capturing efficiency (74.45%) of oleic acid magnetite (OA-Fe3O4) was observed for Bacillus cereus at 30 minutes. However for Escherichia coli, both ethylene-diamine magnetite (EDA-Fe3O4) and oleic acid magnetite (OA-Fe3O4) showed maximum capturing efficiency (61.65% and 63.91% respectively). It was concluded from the study that magnetite coated with oleic acid and ethylenediamine removed pathogenic bacteria from milk efficiently. However, more research is required to study the effect of these magnetic nanoparticles on nutritional composition of milk.Peer reviewe
Evaluation of the spermatogenic activity of polyherbal formulation in oligospermic males
The therapeutic use of natural herbs is an ancient human civilization act and the numbers of people have reliance on their pharmacological properties and preferred to use the natural herbs. People also use to consume these herbs as supplements to energize, bolster, and eventually enhance sexual ability. Polyherbal formulation (PHF) is one of these herbal amalgams that can be used to treat sexual dysfunction including erectile dysfunction, impotence, ejaculation dysfunction, and hypogonadism. The pilot study was aimed at evaluating the capacity of PHF in enhancing the spermatogenic potential of oligospermic patients. Thirty-six male patients with oligospermia were enrolled and randomized either to treatment (n = 23) with PHF (750 mg/d in three doses for 90 days) or to placebo (n = 13) in the same protocol. The preintervention semen analysis was compared with posttreatment semen analysis. Based on the postintervention semen analysis, patients were advised to undergo either in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) to assess their fertility status. After polyherbal treatment, there was a 256% increase in sperm concentration (9.59 +/- 4.37 x 106/mL to 25.61 +/- 8.6 x 10(6)/mL;
Comparative Assessment of the Bioremedial Potentials of Potato Resistant Starch-Based Microencapsulated and Non-encapsulated Lactobacillus plantarum to Alleviate the Effects of Chronic Lead Toxicity
Lead (Pb) is a well-recognized and potent heavy metal with non-biodegradable nature and can induce the oxidative stress, degenerative damages in tissues, and neural disorders. Certain lactic acid bacterial strains retain the potential to mitigate the lethal effects of Pb. The present work was carried out to assess the Pb bio-sorption and tolerance capabilities of Lactobacillus plantarum spp. Furthermore, potato resistant starch (PRS)-based microencapsulated and non-encapsulated L. plantarum KLDS 1.0344 was utilized for bioremediation against induced chronic Pb toxicity in mice. The experimental mice were divided into two main groups (Pb exposed and non-Pb exposed) and, each group was subsequently divided into three sub groups. The Pb exposed group was exposed to 100 mg/L Pb(NO3)2 via drinking water, and non-Pb exposed group was supplied with plain drinking water during 7 weeks prolonged in vivo study. The accumulation of Pb in blood, feces, renal, and hepatic tissues and its pathological damages were analyzed. The effect of Pb toxicity on the antioxidant enzyme capabilities in blood, serum, as well as, on levels of essential elements in tissues was also calculated. Moreover, KLDS 1.0344 displayed remarkable Pb binding capacity 72.34% and Pb tolerance (680 mg/L). Oral administration of both non- and PRS- encapsulated KLDS 1.0344 significantly provided protection against induced chronic Pb toxicity by increasing fecal Pb levels (445.65 ± 22.28 μg/g) and decreasing Pb in the blood up to 137.63 ± 2.43 μg/L, respectively. KLDS 1.0344 microencapsulated with PRS also relieved the renal and hepatic pathological damages and improved the antioxidant index by inhibiting changes in concentrations of glutathione peroxidase, glutathione, superoxide dismutase, malondialdehyde, and activated oxygen species, which were affected by the Pb exposure. Overall, our results suggested that L. plantarum KLDS 1.0344 either in free or encapsulated forms hold the potentiality to deliver a dietetic stratagem against Pb lethality
- …