241 research outputs found

    Explainable Transformer-Based Deep Learning Model for the Detection of Malaria Parasites from Blood Cell Images

    Get PDF
    Malaria is a life-threatening disease caused by female anopheles mosquito bites. Various plasmodium parasites spread in the victim’s blood cells and keep their life in a critical situation. If not treated at the early stage, malaria can cause even death. Microscopy is a familiar process for diagnosing malaria, collecting the victim’s blood samples, and counting the parasite and red blood cells. However, the microscopy process is time-consuming and can produce an erroneous result in some cases. With the recent success of machine learning and deep learning in medical diagnosis, it is quite possible to minimize diagnosis costs and improve overall detection accuracy compared with the traditional microscopy method. This paper proposes a multiheaded attention-based transformer model to diagnose the malaria parasite from blood cell images. To demonstrate the effectiveness of the proposed model, the gradient-weighted class activation map (Grad-CAM) technique was implemented to identify which parts of an image the proposed model paid much more attention to compared with the remaining parts by generating a heatmap image. The proposed model achieved a testing accuracy, precision, recall, f1-score, and AUC score of 96.41%, 96.99%, 95.88%, 96.44%, and 99.11%, respectively, for the original malaria parasite dataset and 99.25%, 99.08%, 99.42%, 99.25%, and 99.99%, respectively, for the modified dataset. Various hyperparameters were also finetuned to obtain optimum results, which were also compared with state-of-the-art (SOTA) methods for malaria parasite detection, and the proposed method outperformed the existing methods

    Fast and accurate fault detection and classification in transmission lines using extreme learning machine

    Get PDF
    To provide stability and a continuous supply of power, the detection and classification of faults in the transmission lines (TLs) are crucial in this modern age. It is required to remove a faulty section from a healthy section to provide safety and to minimize power loss due to the fault. In the contemporary world, machine learning (ML) is extensively used in every aspect of life. In this study, a spontaneous fault detection (FD) and fault classification (FC) system based on ML has been proposed. MATLAB Simulink was employed to simulate two different TLs and to generate normal and fault data (Per unit voltage and current) of ten different types. TL-1 consisted of a single generator and a single load whereas TL-2 consisted of two generators and three loads. Upon normalizing the data, an extreme learning machine (ELM) algorithm was used as the classifier. Two different ELM models were developed for FD and FC purposes through training. The method achieved fault classification accuracies of 99.18% and 99.09% for the TL-1 and TL-2 respectively. On the other hand, fault detection accuracies of 99.53% and 99.60% were achieved for the TL-1 and TL-2. The proposed ELM model compared to a traditional artificial neural network (ANN) model demonstrated relatively a shorter processing time and reduced computational complexity. In addition, the proposed method outperformed the existing state-of-the-art methods

    A Novel Method for Multivariant Pneumonia Classification based on Hybrid CNN-PCA Based Feature Extraction using Extreme Learning Machine with Chest X-Ray Images

    Get PDF
    In this era of COVID19, proper diagnosis and treatment for pneumonia are very important. Chest X-Ray (CXR) image analysis plays a vital role in the reliable diagnosis of pneumonia. An experienced radiologist is required for this. However, even for an experienced radiographer, it is quite difficult and timeconsuming to diagnose due to the fuzziness of CXR images. Also, identification can be erroneous due to the involvement of human judgment. Hence, an authentic and automated system can play an important role here. In this era of cutting-edge technology, deep learning (DL) is highly used in every sector. There are several existing methods to diagnose pneumonia but they have accuracy problems. In this study, an automatic pneumonia detection system has been proposed by applying the extreme learning machine (ELM) on the Kaggle CXR images (Pneumonia). Three models have been studied: classification using extreme learning machine (ELM), ELM with a hybrid convolutional neural network - principle component analysis (CNN-PCA) based feature extraction (ECP), and ECP with the CXR images which are contrast-enhanced by contrast limited adaptive histogram equalization (CLAHE). Among these three proposed methods, the final model provides an optimistic result. It achieves the recall score of 98% and accuracy score of 98.32% for multiclass pneumonia classification. On the other hand, a binary classification achieves 100% recall and 99.83% accuracy. The proposed method also outperforms the existing methods. The outcome has been compared using several benchmarks that include accuracy, precision, recall, etc

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore