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Abstract

Diabetic retinopathy (DR) is an incurable retinal condition caused by excessive blood sugar that, 

if left untreated, can result in even blindness. A novel automated technique for DR detection has 

been proposed in this paper. To accentuate the lesions, the fundus images (FIs) were preprocessed 

using Contrast Limited Adaptive Histogram Equalization (CLAHE). A parallel convolutional 

neural network (PCNN) was employed for feature extraction and then the extreme learning 

machine (ELM) technique was utilized for the DR classification. In comparison to the similar CNN 

structure, the PCNN design uses fewer parameters and layers, which minimizes the time required 

to extract distinctive features. The effectiveness of the technique was evaluated on two datasets 

(Kaggle DR 2015 competition (Dataset 1; 34,984 FIs) and APTOS 2019 (3,662 FIs)), and the 

results are promising. For the two datasets mentioned, the proposed technique attained accuracies 

of 91.78 % and 97.27 % respectively. However, one of the study's subsidiary discoveries was that 

the proposed framework demonstrated stability for both larger and smaller datasets, as well as for 

balanced and imbalanced datasets. Furthermore, in terms of classifier performance metrics, model 

parameters and layers, and prediction time, the suggested approach outscored existing state-of-the-

art models, which would add significant benefit for the medical practitioners in accurately 

identifying the DR.
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1. Introduction

Diabetic retinopathy (DR) is a chronic retinal disease that is regarded as the sixth most common 

cause of blindness worldwide. It’s a hidden progressive chronic disease among the diabetic 

patients. According to the 2013 statistics, 382 million people are affected by diabetes-related 

retinal disease, and by 2025, it is projected to exceed 592 million (Pandey and Sharma, 2018). DR 

shows no clear early sign of appearance; as the condition degrades, complete blindness is basically 

the obvious end result. Regular screening can help to identify the DR at an early stage, which can 

help in arresting any further damage through appropriate medication. Fundus images (FIs) with 



high resolution are utilized for detecting the teensy lesions and grading the severity level. Non-

proliferative DR (NPDR) and proliferative DR (PDR) are the two primary forms of the DR. Again, 

NPDR can be classified with four severity levels: No DR, Mild stage, Moderate stage, and Severe 

stage (Mumtaz, et. al., 2018). Figure 1 reveals some common symptoms of the DR (Mumtaz, et. 

al., 2018). The small dark reddish dot-like lesion is visible near the blood vessel’s terminal point, 

called a microaneurysm (MA). Hypertension and blockage of the retinal veins cause retinal 

hemorrhage (HM), another DR consequence. Small HMs might look a lot similar to the MAs at 

times. Exudates are yellow flicks that filter out the injured capillaries and are made up of lipids 

and protein residues. 

Optic Disc
Exudates

Hemorrhages

Venules

Figure 1. Fundus image with various lesions for DR classification.

In its later phases, the DR is difficult to treat. There are only a few microaneurysms that appear in 

the Mild NPDR. In contrast, multiple MAs, hemorrhages, and venous beading occur in the 

moderate NPDR, leading patients’ capacity to transfer blood to the retina to be compromised. 

Severe NPDR is defined by the appearance of more than 20 intra-retinal hemorrhages in each of 

the four quadrants, visible venous beading in two or more quadrants, and substantial intraretinal 

microvascular abnormality (IRMA) in one or more quadrants. New blood vessels are formed in 

the PDR stage, along with the aforementioned anomalies (Chudzik et. al., 2018).

DR is diagnosed using fundus images. Expert ophthalmologists find existing lesions on the images 

based on which they grade the DR level and suggest appropriate treatment accordingly. As the 

lesions are small and often having an overlapping boundaries between the consecutive DR grades, 

even the expert ophthalmologists cannot provide consistent diagnosis for the same fundus images 



and it is also a time-consuming process. Therefore, an urgent need for a computer-aided system 

has been realized by the research community. 

Various computer-aided systems have been proposed so far for the DR screening. 

Ophthalmologists grade the severity level by screening the lesions present in FIs and providing 

treatment based on the level. Some lesion segmentation techniques were developed to copy this 

style to mark out these tiny lesions and assist the ophthalmologists in correct diagnosis. Image 

processing techniques were frequently used for segmenting lesions of FIs. Using image processing 

techniques, Mumtaz et al. (2018), showed the automatic identification of one of the red lesions, 

i.e., hemorrhage, which is one of the most recognizable symptoms of retinal disorders among 

diabetic patients. Akram et al. (2014), detected the MA from small patches extracted from the FIs 

while PCA was used for dimensionality reduction. Rahim et al. (2016), used fuzzy C-means (FCM) 

image processing techniques to provide a novel automated diagnosis of the DR and maculopathy 

in eye fundus pictures. Kar and Maity (2017), developed a four-part lesion detection technique that 

included extraction of vessels and removal of the optic disc, pre-processing, detection of candidate 

lesion, and post-processing. The dark lesions were separated from the weakly lit retinal 

backgrounds using curvelet-based edge enhancement, while the contrast between the bright lesions 

and the background was improved using a well-designed wideband bandpass filter. Subsequently, 

the mutual information of the maximum matched filter response and the maximum Laplacian of 

Gaussian response was maximized together. Finally, morphology-based post-processing was used 

to exclude the candidate pixels that were incorrectly identified. Umapathy et al. (2019), extracted 

texture features using the image processing and classified by Decision Tree (DT) classifier. For 

the second method the authors utilized the transfer learning method. As the complex features were 

extracted using the image processing technique, the accuracy was not so high. For this, deep 

learning models were also proposed for the lesion segmentation. For the segmentation of 

microaneurysms, Chudzik et al. (2018), presented a patch-based Convolutional Neural Network 

(CNN) with batch normalization layers and a dice loss function Pixel-wise exudate detection with 

a deep CNN was proposed by Yu et al. (2017). Gondal et al. (2017), presented a weakly-supervised 

CNN model that highlighted denoting regions of the retinal images. The authors obtained high 

classification and sensitivity scores. The Mask-RCNN model was proposed to segment small 

lesions (MA and exudates) by Shenavarmasouleh and Arabnia (2020). The authors utilized the 

transfer learning (TL) approach to reuse the pre-trained model ResNet101’s weights and achieved 



an mAP score of 45%. Besides segmentation, image-level classification is also popular for the DR 

grading. The whole image is classified into its classification grades based on unique features in the 

image-level classification.

Several of the studies utilized traditional machine learning (ML) methods such as DT, support 

vector machine (SVM), Random forests (RF), logistic regression (LR), and Gaussian Naïve Bayes 

(GNB). For using traditional ML-based classification, features were extracted using image 

processing techniques later deployed to develop the models. For example, Lachure et al. (2015), 

used morphological image processing like erosion, dilation, opening, closing, etc., to segment 

MAs and exudates. Later the features were fed to the SVM and k-nearest neighbors (KNN) 

classifiers for grading the FIs. Asha and Karpagavalli (2017), detected retinal exudates using 

machine learning techniques where the FIs were segmented using the fuzzy C means algorithm, 

then exudates features were detected from the Luv color space. The classifiers utilized included 

NB, Multilayer Perceptron (MLP), and Extreme Learning Machine (ELM), with ELM providing 

the best results. ML techniques for automatically identifying and categorizing the DR from the 

retina images were studied by Honnungar et al. (2016). The proposed method entailed image 

preprocessing (Contrast Limited Adaptive Histogram Equalization, CLAHE), feature extraction 

using the bag of visual words model, and image classification into distinct DR phases using a 

multi-class classifier (logistic regression, SVM, and RF). Raman et al. applied CLAHE to enhance 

the images, then Sobel operator and contour with circular hough transformation for optic disk 

segmentation, morphological operation for blood vessel segmentation, regions growing for 

exudates segmentation, and a mixture model for microaneurysm segmentation (Raman et. al., 

2016). Finally, an artificial neural network (ANN) was used as a classifier. Carrera et al. (2017), 

utilized image processing to isolate blood vessels, microaneurysms, and hard exudates for 

extracting features, which were later deployed to the SVM classifier. They obtained a sensitivity 

of 95% and an accuracy of 94%. Somasundaram and Alli (2017), developed a ML bagging 

ensemble classifier (ML-BEC) and extracted t-distribution Stochastic Neighbor Embedding (t-

SNE) features. Ramani et al. (2017), proposed a two-level classification for the DR grading. 

Ensemble of Best First Trees (BFTs) was used, whereas misclassified instances were removed and 

deployed to second level ensemble classifiers with J48 Graft Trees. Using Local Ternary Pattern 

(LTP) and Local Energy-based Shape Histogram, Chetoui et al. (2018), identified texture 

characteristics (LESH). For classification, SVM was used with various kernel functions. For 



feature representation, a histogram binning method was utilized. They demonstrated that using 

SVM with an RBF kernel, LESH is the best method, with an accuracy of 90%. ML approaches for 

segmentation and categorization of the DR were presented by Ali et al. (2020). They proposed a 

new regional-growing paradigm based on clustering. They used four types of characteristics for 

texture analysis: histogram (H), wavelet (W), co-occurrence matrix (COM), and run-length matrix 

(RLM). The authors utilized data fusion to create hybrid-feature datasets to increase classification 

accuracy. To obtain 13 optimal features, they used Fisher, correlation-based feature selection, 

mutual information, and probability of error plus average correlation. Finally, five classifiers were 

used: SMO (sequential minimum optimization), Lg (logistic), MLP (multilayer perceptron), and 

SLg (simple logistic). Gayathri et. al. (2021), designed a multipath convolutional neural network 

(M-CNN) for extracting global and local features from fundus images. Then SVM, RF, and J48 

classifiers were used for the final DR grade prediction. The M-CNN network obtained the best 

result with the J48 classifier. Mahmoud et al. (2021), introduced a hybrid inductive ML algorithm 

(HIMLA) for automatic DR detection.

Color FIs were normalized and a convolutional encoder-decoder was used for segmenting blood 

vessels. A multiple instance learning technique was utilized for feature extraction and 

classification. Reddy et al. (2020), experimented with an ensemble learning method with 

Adaboost, RF, DT, KNN, and Logistic Regression. The authors used the grid search technique for 

hyperparameter tuning. Odeh et al. (2021), proposed an ensemble method using RF for robust and 

powerful learning, NN for improving precision, and SVM for accurate, time-saving prediction. 

For feature selection, the authors used info gain attribute evaluation and wrapper subset evaluation 

algorithms. 

One problem with the traditional ML is that the complex features need to be extracted first. This 

manual feature extraction using image processing sometimes fail to capture all the complex 

features necessary for an accurate classification. Here comes the deep learning (DL) approach, 

which is used for imaging in a wide range of applications nowadays. DL models were also 

deployed in the DR identification with significant success through accurate extraction of the 

complex feature using the convolution layers. A 4×4 kernel-based CNN architecture with some 

preprocessing and augmentation methods was proposed by Islam et al. (2018), for detecting the 

DR where the authors employed L2 regularizer and dropout to eliminate overfitting and achieved 



98% sensitivity and 94% specificity with a kappa score of 85%. Zhou et al. (2018), proposed a 

multitasking deep learning model for the DR grading. Because of the interrelationship among the 

DR stages, the authors followed the multitasking approach that predicted the labels with both the 

classification and regression and got a kappa score of 84%. A Siamese-like architecture was also 

proposed for the DR detection by Zeng et al. (2019). The model used binocular fundus images as 

input and was trained with a transfer learning strategy. An attention-based DL model, BiRA-Net 

was proposed by Zhao et al. (2019). Islam et al. (2020), proposed a VGG16 based transfer learning 

approach with a color preprocessing version. The authors used stratified K-fold cross-validation 

to reduce the overfitting problem. For a smaller Kaggle dataset, Samanta et al. (2020), suggested 

transfer learning-based DenseNet and attained a kappa score of 0.8836 on the validation set. On 

the Messidor-1 and APTOS datasets, Gangwar and Ravi (2021), used a pre-trained model, 

Inception-ResNet-v2, and built a custom layer on top, achieving an accuracy of 72.33% and 

82.18% respectively. Islam et al. (2021), developed a customized VGG19 model and down 

sampling technique for DR detection. Majumder and Kehtarnavaz (2021), proposed a multitasking 

deep learning model to detect the five grades of the DR composed of one regression model, one 

classification model, and one regression model for inter-dependency. For the APTOS and 

EyePACS datasets, they achieved a kappa score of 90% and 88%. Also, an integrated shallow 

network was proposed by Chen et al. (2020).

Though various models have been developed, still further improvement is required particularly in 

the case of multiclass classification. Several ML models were employed in some research, but in 

this case, the classification performance was not satisfactory despite the model complexity being 

lower than the existing DL models. Researchers used different transfer learning (TL) models to 

achieve higher classification performance to overcome these shortcomings. However, the TL 

models have a vast number of parameters, layers and consume a lot of time for training. Therefore, 

this study proposes a framework that makes a trade-off between the ML and DL models, increasing 

classification performance and reducing the vast number of parameters and layers, which reduces 

the processing time. In this study, the FIs were preprocessed using CLAHE to highlight the lesions 

of DR. A lightweight parallel CNN model has been developed to extract the most discriminant 

features, which are standardized using a standard scaler. Finally, a single-layer ML algorithm 

model named ELM has been used for classification of the DR. The proposed framework brings its 

novelty through a smaller number of parameters, layers, and comparatively lower processing time. 



The proposed framework also offers versatile capabilities in any domain, for instance, small or 

large datasets, balanced or imbalanced datasets, and low-resolution FIs.

2. Dataset Description

In this study, two prevalent datasets were used: Kaggle DR 2015 competition (Dataset 1) and 

APTOS 2019 respectively provided by EyePACS and Aravind Eye Hospital via Kaggle (dataset 

1, 2015), (dataset 2, 2019). The datasets contained five grades of the DR to detect with 34,984 FIs 

in Dataset 1 and 3,662 images in APTOS 2019. 80% of the data was used for training, and the rest 

was for testing. During image extraction from the Kaggle DR 2015 dataset, some FIs were lost. 

As both the datasets were collected from Kaggle competition, their corresponding test images were 

kept in private. Hence, only the trained data was used for the DR classification. The trained dataset 

then further split into both training and testing set for carried out the classification task. Table 1 

shows the number of FIs per class for both datasets. Representative samples from each class are 

demonstrated in Figure 2.

Table 1. The number of FIs per class for Dataset-1 and APTOS 2019

Level Dataset-1 
(Image Ratio)

APTOS 2019 
(Image Ratio)

No DR 25,707 (0.73) 1,805 (0.49)

Mild DR 2,435 (0.07) 370 (0.10)

Moderate DR 5,268 (0.15) 999 (0.27)

Severe DR 869 (0.025) 193 (0.05)

PDR 705 (0.02) 295 (0.08)

Total 34,984 3,662

D
ataset-1

No DR Mild Moderate Severe PDR



A
PTO

S 2019

No DR Mild Moderate Severe PDR
Figure 2. Samples of No DR, Mild, Moderate, Severe, and PDR from Dataset-1 and APTOS 

2019 

3. Proposed Framework

An adequate framework was proposed in this study for severity grading of the DR. The benefits 

of ML and DL algorithms were merged to develop a robust framework with a trade-off between 

the model’s processing performance and classification performance. Figure 3 exhibits the 

proposed framework to detect DR from the FIs. First, the FIs were preprocessed using CLAHE to 

highlight the lesions more clearly, then normalized and finally reshaped. Afterward, a lightweight 

CNN model was developed to extract the most discriminant features from the processed FIs. The 

extracted features were standardized to be fed into the ELM algorithm, which to classify the 

severity level of the DR. In the subsequent sections, all components of the framework have been 

explained comprehensively.

3.1. Pre-processing

Image preprocessing is crucial for medical image analysis because the classification performance 

varies depending on how well the image has been preprocessed. CLAHE reveals a favorable result 

for enhancing image quality in the case of medical image preprocessing (Nahiduzzaman et. al., 

2021). Since the datasets contained different quality of images, hence for improving the quality of 

low contrast images while focusing on the lesions of FIs, CLAHE was utilized. The intensification 

in CLAHE was controlled by clipping the histogram at a user-defined value called the clip limit. 

The clipping level determined the amount of distortion in the histogram should be eliminated and 

this defined the limit of contrast adjustment. In this study, the tile size was (4 ×4), and the clip 

limit was 2.0 while using the color version of the CLAHE. After applying CLAHE, the FIs have 

been normalized dividing by 255 to make each image range between 0-1, which also reduced the 

complexity of the model. Since the datasets contained diverse FIs, making the FIs with the same 



size was an essential step to follow. Hence, the FIs were resized to (124×124) to fit into the CNN 

model. Figure 4 shows the effect of CLAHE in the FIs.

Dataset-1

APTOS 2019
CLAHE

Normalization

Resized into 
124×124 

Parallel CNN  Standard Scaler 120 Features
Training Data

Testing Data

\
\
\
\
\

Hidden Layer

Input Layer

Output Layer

5 Nodes

1000 Nodes

120 Nodes

120 
Features

Extreme Learning Machine

No DR
Mild

Moderate
Severe

PDR

Pre-processingFIs before pre-processing FIs after CLAHE

Features 
Extraction

Data Splitting

Dataset

Figure 3. A proposed framework to detect the five levels of DR.
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Figure 4. Five levels of FIs without preprocessing and preprocessing with CLAHE.

3.2. Features extraction using parallel convolutional layers

One of the main focuses of this study was to design a CNN that reduced both parameters and 

layers, which eventually shortened the processing time while extracting the most prominent 

features. The notable features assisted the ELM model in accurately detecting the levels of DR. 

Basically, in CNN, the convolutional layer (CL) was positioned sequentially for obtaining the best 



features. For instance, selecting a small number of CL layers might result in the loss of some 

discriminant features, whereas a large number of CL layers might lead to overfitting the model. 

Hence, the number of CL layers needed to be chosen adequately to extract the most relevant 

features. In this study, six CL layers were selected to extract the prominent features while reducing 

overfitting. The lightweight parallax CNN has been shown in Figure 5.

Pre-processed
Fundus Images

Conv2D  BN  ReLU Maxpool Conv2D  BN  ReLU Maxpool

250 120

32 Kernels with size 3×3 
Padding = ‘Valid’
2×2 Maxpool

16 Kernels with size 3×3 
Padding = ‘Valid’
2×2 Maxpool

Dense Layers

4 Conv2D Layers
64 Kernels with size 9×9, 
7×7, 5×5 3×3 
Padding = ‘Same’

Parallel Convolutional Layers

Concatenate 

Sequential

0.5 
Dropout

0.5 
Dropout 120 Extracted

Features

Figure 5. The lightweight parallel CNN to extract the features from FIs.

In the lightweight parallel CNN, four CLs were placed in parallel, which resulted in lowering the 

parameters and processing time. Since the four CLs were run in parallel, which could be considered 

as a single CL but performed just like four CLs. The size of each CL was 64. The kernel sizes of 

the first, second, third, and fourth CLs were 9×9, 7×7, 5×5, and 3×3, respectively and the activation 

function was ReLU. In this study, the padding size was kept the same in the first four CLs to check 

the border element. As sometimes the border element might hold important information in the FIs 

which were checked using the same padding. Afterwards, the result of these parallel CLs were 

concatenated and fed into the sequential CNN. The sizes of the last two CLs were 32 and 16, 

respectively, with a kernel size of 3×3. The padding size in the rest of the CLs was kept “valid”. 

Each CL was followed by batch normalization, activation, and a max-pooling layer. Max-pooling 

with 2×2 filters was used to extract the most important regions of the FIs by obtaining the highest 

value in each region at the CLs. There were two fully connected (FC) layers, and the features were 

extracted from the last FC layer. Two dropouts were used with a 0.5 probability: one after the last 



CL and another after the first FC layer. Dropout was used to reduce overfitting and speed up the 

training process by randomly skipping 50% of all nodes. For extracting the features, the CNN 

model was run for 50 epochs with a batch size 64 while considering the learning rate of 0.001 with 

the ADAM optimizer and handling the loss using sparse categorical cross-entropy. A total of 120 

features were selected from the last FC layer by using a trial-and-error process. The summary of 

the CNN model is shown in Table 2.

Table 2. Summary of proposed lightweight CNN for feature extraction

Layer (Type) Output Shape Parameters

model (Functional) (None, 124, 124, 256) 31, 744  

conv5 (Conv2D)  (None, 122, 122, 32)        73, 760  

bn1 (BatchNormalization) (None, 122, 122, 32)      128 

av5 (Activation) (None, 122, 122, 32) 0

mp1 (MaxPooling2D) (None, 61, 61, 32) 0

conv6 (Conv2D) (None, 59, 59, 16)       4, 624

bn2 (BatchNormalization) (None, 59, 59, 16)  64

av2 (Activation) (None, 59, 59, 16)  0

mp2 (MaxPooling2D) (None, 29, 29, 16)       0

dp1 (Dropout) (None, 29, 29, 16)    0

ft (Flatten)  (None, 13456) 0

dense (Dense) (None, 250) 3, 364, 250   

bn4 (BatchNormalization) (None, 250) 1, 000

av4 (Activation) (None, 250) 0

dp2 (Dropout) (None, 250) 0

Feature Extraction (Dense) (None, 120) 30, 120

Total Parameters 3, 506, 775

Trainable Parameters 3, 505, 939



Non-trainable Parameters 836

3.3. Extreme Learning Machine

Before fitting the features into ELM, features were standardized by subtracting the mean and 

scaling to mean-variance. The standard scaler was employed to regularize the extracted features, 

which improved the classification performance of the models (Farrell and Saloner, 1985), 

(Nahiduzzaman et. al., 2019). The standard score for the sample  has been calculated using 𝑥

Equation 1 (Farrell and Saloner, 1985).

𝑦 =  
𝑥 ―  𝑥

𝜎
(1)

Where,  is the mean of the samples and   is the standard deviation of the samples.𝑥 𝜎

Huang et. al. (2006), proposed ELM, a forward feed network-based neural network. The 

standardized 120 features were classified using a single hidden layer. The number of nodes in the 

hidden layer for Dataset-1 and APTOS 2019 were 1000 and 200, respectively, which were selected 

by trial-and-error method. The number of nodes in the input and output layers of the ELM model 

for both datasets were 120 and 5, respectively, whereas the ReLU was used as an activation 

function. Due to the absence of backpropagation, the training time was a thousand times faster 

than the typical NN, resulting in better generalization power and higher classification performance 

(Huang et. al., 2006; Nahiduzzaman et. al., 2021). The parameters from the input to the hidden 

layer were calculated randomly, whereas the parameters from the hidden layer to the output layer 

were calculated using pseudoinverse. For extracting features using lightweight CNN, the entire 

trainable parameters for the DR classification are 3, 505,939. For classification using Dataset-1 

and APTOS 2019, the complete parameters of the ELM were 125,500, and 25,000, resulting in 

total trainable parameters of 3, 630, 939, and 3,530, 939, respectively.

Algorithm 1: Extreme Learning Machine
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3:
Determine the output weight matrix ( , )N t

†
( , ) ( , ) ( , )N t N n n tH T  

4:
Make prediction using ( , )N t

4. Result and Discussion

Several performance metrics, such as accuracy, precision, recall, f1-score, and Area Under the 

Curve (AUC) curve, were used to evaluate the performance of the proposed framework. Equations 

2 through Equation 6 can be used to define the metrics (Powers, 2020).



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁 

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
    

(2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃

(3)

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑁 +  𝐹𝑃

(4)

𝐹1 ― 𝑆𝑐𝑜𝑟𝑒 =  
2 ×  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 
(5)

𝐴𝑈𝐶 =  
1
2(

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 +   

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
)    

(6)

Where true positives, true negatives, false positives, and false negatives are symbolized as , , 𝑇𝑃 𝑇𝑁

 and , respectively. True positives indicated that the normal patients were correctly detected 𝐹𝑃 𝐹𝑁

as normal, true negatives indicated that the DR affected patients were correctly identified as DR 

whereas false positives indicated that the normal patients were wrongly detected as DR and false 

negatives indicated that the DR patients were wrongly detected as normal.

PyCharm Community Edition (2021.2.3) software was used to run all of the codes, which were 

written in the python programming language. Keras was used to build the CNN model, with 

TensorFlow as the backend. The ELM models were trained and tested on a PC with a 64-bit 

Windows 10 Pro operating system, an Intel (R) Core (TM) i9-11900 CPU @ 2.50GHz, 32GB of 

RAM, and an NVIDIA GeForce, RTX 3090 24 GB GPU.

In this section, the different types of performance were investigated to show the robustness of the 

proposed framework. A lightweight customized CNN has extracted 120 prominent features from 

the preprocessed FIs. These prominent features were further preprocessed and fitted into the ELM 

model to classify different levels of DR. In abridgement, the feature deriving capability was 

incorporated with the ELM. The proposed combination was examined with two datasets.



4.1. Results of Dataset-1

The ELM model was trained using 27,978 FIs, whereas the numbers of No DR, Mild, Moderate, 

Severe, and PDR FIs were 20566, 1948, 4214, 695, and 564 respectively. The training process 

required only one iteration as there was no backpropagation in the ELM. Therefore, the ELM 

training process was faster than the traditional neural network (NN) and the DL models. Another 

point that needs to be noted was that to classify the DR levels correctly, a number of iterations 

needs to be carried out to train the NN and DL models. However, in this study, the proposed ELM 

achieved a promising result for only one epoch for both the datasets. After completing the training, 

6,997 FIs (No DR: 5141, Mild: 487, Moderate: 1054, Severe: 174, and PDR: 141) were employed 

for assessing the classification performance of the ELM model. The CM obtained by the ELM for 

Dataset-1 is shown in Figure 6. Clearly, in the case moderate level, misclassified number of images 

were much higher than the other levels.
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Figure 6. Confusion Matrix (CM) of ELM for Dataset-1.

The average precision, recall, f1-score, and accuracy of the ELM for dataset-1 were 0.91, 0.83, 

0.87, and 91.78%, respectively, as shown in Table 3. Furthermore, to demonstrate the superior  



performance of ELM in this study, five well-known ML algorithms such as SVM, GNB, RF, DT 

and LR were also employed to obtain the classification results as presented in Table 3, Table 4, 

Table 5 and Figure 7. The best classification results were obtained from SVM among these five 

models. The average precision, recall, f1-score, and accuracy of the SVM were 0.58, 0.44, 0.49, 

75.83% respectively which were also quite lower than ELM. In fact, SVM produced good results 

during the binary classification whereas NN models showed good results for multiclass 

classifications (Nahiduzzaman et. al., 2019). As ELM is like traditional NN except the back-

propagation algorithm and for that reason ELM is faster and the rate of learning and generalization 

are more effective. This provides promising results in the case of multiclass classifications (Afza 

et. al., 2021; Alenezi et. al., 2023). 

Table 3. Classification performance comparison by Precision for Dataset-1

Precision
DR Level

ELM SVM GNB RF DT LR

No DR 0.93 0.82 0.86 0.82 0.82 0.82

Mild 0.87 0.42 0.24 0.42 0.28 0.41

Moderate 0.87 0.48 0.40 0.47 0.44 0.47

Severe 0.95 0.56 0.47 0.55 0.46 0.52

PDR 0.94 0.61 0.56 0.64 0.61 0.65

Average 0.91 0.58 0.50 0.58 0.52 0.57

Table 4. Classification performance comparison by F-1Precision for Dataset-1

F1-Score
DR Level

ELM SVM GNB RF DT LR

No DR 0.95 0.86 0.82 0.86 0.85 0.86

Mild 0.77 0.31 0.28 0.30 0.25 0.31

Moderate 0.82 0.43 0.45 0.43 0.41 0.43



Severe 0.89 0.39 0.40 0.39 0.36 0.39

PDR 0.91 0.46 0.46 0.47 0.44 0.49

Average 0.87 0.49 0.48 0.49 0.46 0.49

Table 5. Classification performance comparison by Recall for Dataset-1

Recall 
DR Level

ELM SVM GNB RF DT LR

No DR 0.97 0.91 0.78 0.90 0.87 0.90

Mild 0.70 0.24 0.33 0.24 0.23 0.25

Moderate 0.78 0.39 0.52 0.40 0.39 0.39

Severe 0.84 0.30 0.35 0.30 0.29 0.31

PDR 0.89 0.37 0.39 0.37 0.34 0.39

Average 0.83 0.44 0.48 0.44 0.43 0.45
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Figure 7. Accuracies of employed ML techniques for Dataset-1



The average AUC of the ELM for the Dataset-1 was 95.08%, whereas the class-wise AUCs of the 

ELM are demonstrated in Figure 7. It was observed that each class contributed almost equally to 

the final classification result (AUC values for all classes higher than 92%). It could be concluded 

that though the class distribution was imbalanced, the proposed framework showed its consistency 

in detecting every class of DR.

Figure 8. Receiver Operating Characteristic (ROC) curve of ELM for Dataset-1

4.2. Results of APTOS 2019 Dataset

In the previous section, the proposed framework revealed promising results for the Dataset-1, 

which contained a total of 34,984 FIs. Since the DL models worked well for larger datasets, the 

proposed framework validated this by showing favorable classification performance. In this study, 

it was also checked whether the proposed framework could achieve promising classification 

performance with a small dataset. Hence, a small dataset, APTOS 2019 was used that contained 

FIs, almost ten times less than the Dataset-1. 
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Figure 9. Confusion matrix of ELM for APTOS 2019 dataset

Among the total 3,662 FIs, 2,929 FIs were used for training the ELM and other five ML models, 

whereas the numbers of No DR, Mild, Moderate, Severe, and PDR were 1444, 296, 799, 154, and 

236, respectively. For evaluating the ELM classification performance, a CM was developed using 

733 FIs (No DR: 361, Mild: 74, Moderate: 200, Severe: 39, and PDR: 59). The level-wise 

precision, f1-score and recall shown in Table 6 to Table 8 demonstrated that the ELM model 

performed well in the case of the imbalance or smaller dataset. The best accuracy (97.27%) was 

achieved by ELM model for the APTOS 2019 dataset with a recall of 95% and a precision of 96% 

(Figure 10). Whereas the best accuracy obtained by SVM (87.04%) among other models was 

almost 10% lower than the ELM model. In the case of medical image analysis, the recall must be 

maximized i.e., the affected patient should be identified accurately. 

Table 6. Classification performance comparison by Precision for APTOS 2019 dataset 

Precision
DR Level

ELM SVM GNB RF DT LR



No DR 1.0 0.96 0.96 0.97 0.96 0.97

Mild 0.99 0.74 0.74 0.79 0.74 0.75

Moderate 0.94 0.8 0.8 0.79 0.79 0.8

Severe 0.9 0.75 0.75 0.71 0.69 0.71

PDR 0.96 0.73 0.73 0.68 0.57 0.72

Average 0.96 0.8 0.8 0.79 0.75 0.79

Table 7. Classification performance comparison by F-1Precision for APTOS 2019 dataset 

F1-Score
DR Level

ELM SVM GNB RF DT LR

No DR 0.99 0.97 0.97 0.98 0.97 0.98

Mild 0.97 0.72 0.72 0.74 0.7 0.73

Moderate 0.96 0.84 0.84 0.83 0.81 0.83

Severe 0.92 0.68 0.68 0.63 0.59 0.63

PDR 0.92 0.62 0.62 0.6 0.58 0.63

Average 0.95 0.77 0.77 0.76 0.73 0.76

Table 8. Classification performance comparison by Recall for APTOS 2019 dataset 

Recall 
DR Level

ELM SVM GNB RF DT LR

No DR 0.99 0.98 0.98 0.99 0.97 0.98

Mild 0.96 0.7 0.7 0.7 0.66 0.7

Moderate 0.97 0.88 0.88 0.87 0.83 0.88

Severe 0.95 0.62 0.62 0.56 0.51 0.56



PDR 0.88 0.54 0.54 0.54 0.59 0.56

Average 0.95 0.74 0.74 0.73 0.72 0.74
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Figure 10. Accuracies of employed ML techniques for Dataset-1

The class-wise ROC is shown in Figure 9 to assess the ELM's ability to distinguish between the 

DR levels. The estimated ROC of the ELM model for the APTOS 2019 dataset was 98.87%. The 

ROC of each class was quite good even if the dataset was unbalanced, demonstrating the model's 

robustness.



Figure 11. ROC matrix of ELM for APTOS 2019 dataset

A graphical illustration is shown in Figure 10 to make the results more legible and comparable 

between the two datasets. The suggested framework is compatible in any setting, such as smaller 

(APTOS 2019) or larger (Dataset 1) datasets. This was accomplished by employing CLAHE to 

highlight the lesions. Hence, it is easy for the parallel CNN model to extract the most 

discriminating features and the ELM based on deep learning mechanism can accurately detected 

the DR levels. The framework was also straightforward to use as it performed well even when 

dealing with an unbalanced dataset, which is common with real-world medical data.
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Figure 12. Graphical illustration of the classification performance of proposed framework



4.3. Comparison with previous works

Table 9 and Table 10 show the classification performance compared with previous state-of-the-art 

(SOTA) models for both the datasets. For Dataset-1, the proposed framework (PF) was compared 

with two studies. Pratt et al. processed the FIs using color normalization, and  developed a CNN 

with 10 CLs and two FC layers (Pratt et. al., 2016). The number of filters in 10 CLs were 32, 32, 

64, 64, 128, 128, 256, 256, 512, and 512, respectively, and both the FC layers had 1,024 nodes. 

Apart from these, they used 5,000 FIs (the shape of the FIs were 512×512) for testing and achieved 

an overall accuracy and sensitivity (recall) of 75% and 30%, respectively. In contrast, Qummar et 

al. (2019), used five TL models: Resnet50, Inceptionv3, Xception, Dense121, and Dense169 for 

classifying DR from the FIs. In addition, they ensemble these five TL models for final prediction. 

They also resized the FIs into 512×512 and achieved an accuracy, recall, precision, and f1-score 

of 80.8%, 51.5%, 63.85%, and 53.74%, respectively, while testing the model on 5,608 FIs and 

performing up and down sampling. The proposed PCNN-ELM has only 8 CLs with 3.6 million 

parameters, which was quite fewer than the other two works. Again, the contrast of the FIs were 

enhanced using CLAHE, and for that reason, the lesion was highlighted as shown in figure 4. 

Finally, the FIs were resized into 124×124 and the framework has been tested using 5608 FIs and 

achieved an accuracy of 91.88 %, which is 10% higher than the previous study, and a recall of 

83%, which is almost 30% higher than the previous study. The prior two research were 

significantly affected by the imbalanced dataset. No DR level highly dominated the final 

classification result and showed a preliminary result in the case of other classes as seen in Table 

9. On the contrary, each class almost equally contributed to the final classification result, which 

validated the handling capability of the unbalanced dataset of the proposed framework. Pratt et al. 

(2016), showed that their proposed methodology required 0.04 seconds to classify one FI. In 

contrast, the proposed framework required only 0.0009987 seconds to test the total of 5608 FIs, 

whereas 2 μs were required for classifying one FI. These two studies reshaped the FIs by 512×512, 

whereas this study used 124×124 but still ensuring a promising result with a calculated AUC of 

92.10 % (Qummar et al. achieved an average AUC of 86.8%) that showed the robustness of the 

proposed model.

Table 9. Class-wise classification performance of the proposed framework (PF) compared with 

the previous studies for the Dataset-1



Precision Recall F1-Score AUCLevel/ 
Ref. 
No. (Prat

t et. 
al., 

2016
)

(Qu
mma
r et. 
al., 

2019
)

PF (Prat
t et. 
al., 

2016
)

(Qu
mma
r et. 
al., 

2019
)

PF (Prat
t et. 
al., 

2016
)

(Qu
mma
r et. 
al., 

2019
)

PF (Prat
t et. 
al., 

2016
)

(Qu
mma
r et. 
al., 

2019
)

PF

No 
DR

0.78 0.84 0.93 0.95 0.97 0.97 0.85 0.90 0.95 - 0.85 0.94

Mild 0.00 0.51 0.89 0.00 0.80 0.68 0.00 0.15 0.78 - 0.71 0.92

Moder
ate

0.23 0.65 0.87 0.23 0.41 0.78 0.29 0.50 0.82 - 0.85 0.95

Sever
e

0.78 0.48 0.92 0.78 0.51 0.83 0.10 0.49 0.88 - 0.96 0.96

PDR 0.44 0.69 0.93 0.44 0.56 0.88 0.37 0.62 0.90 - 0.97 0.97

Several researchers used the APTOS 2019 dataset to detect the levels of DR. Table 10 shows the 

average classification performance of the SOTA models for the APTOS 2019 dataset as class wise 

results were not available. Sikder et al. achieved the highest classification accuracy of 94.20%, 

and the highest AUC of 97.90% was achieved by Alyoubi et al. (2021), from the SOTA models 

(Sikder et. al., 2021). In contrast, the proposed framework outperformed all the SOTA models with 

an accuracy and an AUC of 97.27% and 98.87%, respectively. Table 11 shows the comparison of 

the proposed framework's performance with the previous works. From the table, most of the SOTA 

models employed transfer learning (TL) models to extract the features and classify the DR from 

the FIs. The TL models have many layers and parameters; for instance, the VGG16 model has 

almost 138.3 million parameters, and DenseNet-169 has 169 layers, which are too many. They 

also required high-resolution FIs (512×512, 380×380, 224×224, etc.) to distinguish the DR levels 

correctly.

Table 10. Classification performance compared with SOTA models for the APTOS 2019

Ref. No. Precision (%) Recall (%) Accuracy (%) AUC (%)



(Dondeti et. al., 
2020)

76.00 77.00 77.90 -

(Bodapati et. al., 
2020)

80.00 81.00 81.70 -

(Liu et. al., 2020) 91.37 - 86.34 -

(Kassani et. al., 
2019)

87.00 88.24 83.09 91.80

(Bodapati et. al., 
2021)

82.00 83.00 82.54 79.00

(Sikder et. al., 
2021)

94.34 92.69 94.20 -

(Alyoubi et. al., 
2021)

89.00 - 89.00 97.90

Proposed 
Framework

96.00 95.00 97.27 98.87

In contrast, the proposed framework only employed six CLs, where four of them were run in 

parallel, which was considered a single CL. Hence, there were total eight layers, including four 

CLs, two FC layers, and three from the ELM. The total parameters of the proposed framework are 

almost 3.6 million, including both the parallel CNN and ELM model parameters that validated the 

lightweight capability of the CNN. This framework required an image size of 124×124, which was 

another objective of this study to detect DR levels using low-resolution FIs. Table 11 shows that 

the proposed framework has the lowest number of parameters and layers, which could be the main 

reason for shorter processing time. 

From the above comparison, it was concluded that the proposed framework could classify the 

levels of DR accurately with lower parameters, layers, low-resolution FIs, and relatively shorter 

time. It was also revealed that the framework is capable of adapting to any dataset environment, 

small or large, balanced or imbalanced and that classifying a FI requires only 2 μs seconds, 

allowing for real-time patient feedback.

Table 11. Simplicity of the proposed framework compared with SOTA models



Model Name [Ref. No.] No. of Layers No. of Parameters (million)

ResNet 50 (Qummar et. al., 
2019; Kassani et. al., 2019) 50 25.6

Inception-V3 (Qummar et. al., 
2019; Kassani et. al., 2019) 48 23.8

Xception (Qummar et. al., 
2019; Bodapati et. al., 2020; 
Liu et. al., 2020; Kassani et. 
al., 2019; Bodapati et. al., 

2021)

71 22.9

Dense 121 (Qummar et. al., 
2019) 121 8.0

Dense 169 (Qummar et. al., 
2019) 169 14.3

VGG16 (Bodapati et. al., 
2020; Bodapati et. al., 2021) 16 138.3

NasNet-Large (Bodapati et. 
al., 2020; Liu et. al., 2020) - 88.9

Inception Resnet V2 
(Bodapati et. al., 2020; Liu et. 

al., 2020)
164 55.8

EfficientNetB4 (Liu et. al., 
2020) - 19.4

EfficientNetB5 (Liu et. al., 
2020) - 30.5

CNN512 (Alyoubi et. al., 
2021) 9 8.2

Proposed Framework 8 3.6

In fact, the diabetic retinopathy datasets used in this study were highly imbalanced particularly for 

the multiclass classification due to the unavailability of the PDR images. Since in real life 

consideration, the number of PDR patients are not many, and most datasets contain small portion 

of PDR images with respect to the other classes. Since the dataset was fairly imbalanced, some 



researchers used data augmentation and other techniques (adding weight to the poorly detected 

class, up sampling, down sampling) to improve the classification performance (Pratt. al., 2016; 

Dondeti. al., 2020). However, the results were not better than the findings obtained by the proposed 

framework. Using data augmentation, more data can be produced, but it needs additional time for 

processing. Most studies, while using these two imbalanced datasets, reported results without any 

data balancing (Nahiduzzaman et. al., 2021; Pratt. al., 2016; Dondeti. al., 2020; Bodapati et. al., 

2020; Bodapati et. al., 2021). Apart from these, the results presented for Dataset-1 in Table 4 to 

Table 6, it was observed that the precision, recall and f1-score of PDR images were 0.94, 0.91 and 

0.89 respectively which were quite satisfactory. Though there were a smaller number of PDR 

images, but the classification results were similar to the normal images (precision, f1-score and 

recall of No DR images are 0.93, 0.97 and 0.95 respectively). Again, similar observations were 

made for the APTOS 2019 dataset. In addition, from Figure 8, it was found that the class wise 

ROC of PDR was 97.73% whereases for No DR it was 94.51% in the case of Dataset-1. Therefore, 

it can be concluded that without implementing any data augmentation technique, the proposed 

CNN-ELM model detected the DR accurately without producing any biased results due to the 

imbalanced datasets. The proposed framework achieved a promising outcome based on the 

performance metrics considered in this study and eliminated additional time required for data 

augmentation.

5. Conclusion

This study proposed a novel framework to enable fast and accurate detection of the levels of DR 

from the FIs, which can aid diabetic patients in preventing or delaying vision loss. CLAHE was 

adopted to make the lesson clear so that a CNN model can easily extract the most discriminating 

features. 120 features were extracted using a lightweight parallel CNN to reduce processing time 

and complexity. Finally, these features were standardized and fit into the ELM model to adequately 

distinguish the different levels of the DR. The proposed framework exhibited a promising result 

in the cases of 34,984 (Dataset-1) and 3,662 (APTOS 2019) FI datasets with not only higher 

classification performance but also lowering the parameters, layers, and processing time 

significantly. The framework also outperformed the existing SOTA models for both the datasets. 

The proposed model can accurately detect the severity degree of the DR earlier on, hence reducing 

vision loss of the patients and saving valuable time of the medical practitioners.
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Highlights:

 Diabetic retinopathy (DR) detection from Fundus Images has been proposed

 Parallel CNN with fewer parameters and layers for distinctive feature extraction

 Extreme Learning Machine (ELM) technique was utilized for the DR classification

 The model demonstrated robustness for different types of datasets

 Accuracy upto 97.27 % was achieved and outscored state-of-the-art models




