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A B S T R A C T

Around the world, several lung diseases such as pneumonia, cardiomegaly, and tuberculo-

sis (TB) contribute to severe illness, hospitalization or even death, particularly for elderly

and medically vulnerable patients. In the last few decades, several new types of lung-

related diseases have taken the lives of millions of people, and COVID-19 has taken almost

6.27 million lives. To fight against lung diseases, timely and correct diagnosis with appro-

priate treatment is crucial in the current COVID-19 pandemic. In this study, an intelligent

recognition system for seven lung diseases has been proposed based on machine learning

(ML) techniques to aid the medical experts. Chest X-ray (CXR) images of lung diseases were

collected from several publicly available databases. A lightweight convolutional neural net-

work (CNN) has been used to extract characteristic features from the raw pixel values of the

CXR images. The best feature subset has been identified using the Pearson Correlation

Coefficient (PCC). Finally, the extreme learning machine (ELM) has been used to perform

the classification task to assist faster learning and reduced computational complexity.

The proposed CNN-PCC-ELM model achieved an accuracy of 96.22% with an Area Under

Curve (AUC) of 99.48% for eight class classification. The outcomes from the proposed model

demonstrated better performance than the existing state-of-the-art (SOTA) models in the

case of COVID-19, pneumonia, and tuberculosis detection in both binary and multiclass

classifications. For eight class classification, the proposed model achieved precision, recall

and fi-score and ROC are 100%, 99%, 100% and 99.99% respectively for COVID-19 detection

demonstrating its robustness. Therefore, the proposed model has overshadowed the exist-

https://doi.org/10.1016/j.bbe.2023.06.003
0168-8227/� 2023 The Author(s). Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics and Biomedical Engineering of
the Polish Academy of Sciences.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author at: Military University of Technology, Warsaw, Poland.
E-mail address: marcin.kowalski@wat.edu.pl (M. Kowalski).

biocybernetics and biomedical engineering 43 (2023) 528–550

Avai lab le a t www.sc ienced i rec t .com

ScienceDirect

journal homepage: www.elsev ier .com/locate /bbe

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbe.2023.06.003&domain=pdf
https://doi.org/10.1016/j.bbe.2023.06.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marcin.kowalski@wat.edu.pl
https://doi.org/10.1016/j.bbe.2023.06.003
http://www.sciencedirect.com/science/journal/01688227
http://www.elsevier.com/locate/bbe


ing pioneering models to accurately differentiate COVID-19 from the other lung diseases

that can assist the medical physicians in treating the patient effectively.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of Nalecz Institute of Biocyber-

netics and Biomedical Engineering of the Polish Academy of Sciences. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the last few decades, several lung-related diseases have

become an epidemic to humans, such as pneumonia, pleural,

cardiomegaly, TB, and more recently the most life-

threatening disease, COVID-19. Approximately 7% of the glo-

bal population (450 million) is affected by pneumonia alone,

and every year approximately 2 million people lose their lives

due to the pneumonia [1]. In the past three years, almost 6.27

million people died due to COVID-19, and nearly 522 million

people were affected [2]. In 2020, around 1.3 million people

died due to TB; hence, in total 4 million people died due to

lung-related disease every year [3]. These types of diseases

are generally detected using CXR images of the lung by the

radiologists as it is cheap and requires only fewer steps to

detect these diseases. More than 35 million CXR images are

taken every year in the US alone for medical treatment [4].

Many radiologists now have to assess more than 100 CXR

images every day, resulting in an increased workload and fati-

gue and eventually wrong diagnosis [4]. Hence, the conven-

tional process is very time-consuming and expensive.

Furthermore, the diagnosis made by the radiologists may vary

due to an error in human judgement. If COVID-19, pneumo-

nia, TB, etc. are predicted at the early stages, it may save mil-

lions of human lives. Gradually, newer variants of COVID-19

for example, Delta, Omicron, etc. are spreading at a faster

rate, hence it is too difficult for the medical physicians to cope

up with the high demand for treatment on time. As a result,

automated technologies that are trained to forecast the

symptoms of a distinct lung-related anomalies based on a

specific CXR image have the potential to aid the radiologists

and medical physicians in accurate and faster diagnosis with

a higher level of confidence. Hence, a computer aided intelli-

gent system based on machine learning and deep learning

has been designed to detect the lung related disease automat-

ically based on the CXR images.

In the past, several efforts have been made to automati-

cally identify lung-related anomalies using the CXR images

due to the recent availability of the larger data sets. Loey

et al. developed a CNN model for extracting the prominent

features and finally a Bayesian model was used to classify

the COVID-19 patient [5]. Moreover, they used 3,616 COVID-

19 data and achieved an accuracy of 96%. Bhattacharyya

et al. utilized a pre-trained CheXNet model and trained this

model using 1,326 images of COVID-19 to develop a COVID-

CXNet model [6]. For preprocessing they used Contrast Lim-

ited Adaptive Histogram Equalization (CLAHE) and achieved

an accuracy of 87.88%. Ieracitano et al. distinguished between

CXR images of patients with idiopathic pneumonias unre-

lated to COVID-19 and those of patients with COVID-19 pneu-

monia by suggesting a fuzzy logic-based deep learning (DL)

technique [7]. In addition, they used 121 images of COVID-

19 pneumonia patient and their model’s accuracy was

approximately 81% and provided an explainable artificial

intelligence method to aiding doctors. Agrawal and Choud-

hary developed a deep CNN to detect the COVID-19 and pneu-

monia from the CXR images [8]. They handled the class

imbalance problem using the oversampling technique,

namely Synthetic Minority Over-sampling Technique

(SMOTE). Moreover, they considered two (Covid-19 Vs Normal)

and three classes (COVID-19 Vs Pneumonia Vs Normal), while

they used 1,525 samples of COVID-19 patients and achieved

an accuracy of 96% and 94.45% for the two and three classes

respectively. Gayathri et al. extracted features using pre-

trained CNN models, for instance InceptionResnetV2, Res-

net101, etc., reduced the dimensioanlity using sparse auto-

encoder and finally used a feed forward neural network to

detect the COVID-19 [9]. In this study, they used 504 COVID-

19 images to train their models and achieved an accuracy of

95.78% and AUC of 98.21%. Kassani et al. compared different

transfer learning (TL) models to detect the COVID-19 from

CXR and computed tomography (CT) images [10]. Firstly, they

used eight TL models: MobileNet, DenseNet, Xception,

ResNet, InceptionV3, Inception- ResNetV2, VGGNet, and NAS-

Net for extracting the features from the images and several

ML models were developed. Finally, 117 CXR and 20 CT images

of COVID-19 patients were used to train their models and

achieved the highest accuracy of 99% using the Bagging tree

classifier with DenseNet121 as a feature extractor. Yousefi

et al. segmented the lung lobes using a 2D U-Net model to

detect COVID-19 from CXR images [11]. The authors reduced

dimensions using several techniques, for instance, Laplacian

scoring and principal component analysis (PCA). They used

704 CXR images for training their model and achieved

89.6%, 72.6% accuracy for two-class, multiclass classifica-

tions, respectively. Akter et al. used various TL models such

as VGG19, GoogLeNet, etc., to detect the COVID-19 from the

CXR images [12]. The author used the augmentation tech-

nique to balance the datasets and used 52,000 CXR images

to train their models and achieved a high accuracy of 98%

using MobileNetV2 for binary classification. At the same time,

the compilation time was 2 h, 50 min and 21 s. Chowdhury

et al. used several pre-trained TL models to detect the viral

and COVID-19 pneumonia from CXR images [13]. This study

combined several datasets for training the models and

achieved an accuracy of 99.7%, 97.9% for two and three-

class classification, respectively. Horry et al. proposed a suit-

able CNN to detect the COVID-19 from multimodal imaging

data [14]. They also removed the noise from images and

achieved a precision of 86%, 100%, and 84% for CXR, ultra-

sound, and CT scans, respectively. Rasheed et al. proposed

two classifiers: LR and CNN, to diagnose COVID-19 [15]. The
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generative adversarial network was used for data augmenta-

tion and PCA to select the most prominent features from 308

CXR images for training their model and achieved an accu-

racy of 97.6% using PCA. Panwar et al. utilized the VGG19

model to fast detect the COVID-19 from CXR and CT scan

images [16]. Minaee et al. used 5000 CXR images to detect

the COVID-19 using four TL models and achieved a specificity

of 92.9% [17]. Afshar et al. developed capsule networks named

COVID-CAPS to detect COVID-19 from 13,975 CXR images and

achieved an accuracy of 95.7% [18]. Abbas et al. developed a

Decompose, Transfer, and Compose (DeTraC) CNN model to

classify the COVID-19 and achieved an accuracy of 93.1%

[19]. Arias-Londono et al. used more than 79,500 CXR images

for training their CNNmodel to detect COVID-19 and achieved

an accuracy of 91.5% [20]. Alam et al. fused histogram-

oriented gradient (HOG) and CNN for extracting the features

from CXR images to detect COVID-19 [21].

Pandit et al. proposed the VGG19 TL model to detect

COVID-19 from CXR images [22]. They used 1428 images for

training their model and achieved an accuracy of 92.53%,

and 96% for two- (COVID-19 vs Normal) and three-class (Nor-

mal vs Bacterial Pneumonia vs COVID-19) classification.

Sekeroglu and Ozsahin et al. used several DL and ML models

to detect COVID-19 and pneumonia from CXR images and per-

formed 38 experiments using CNN, 10 experiments using five

ML models, and 14 experiments using pre-trained TL models

[23]. For two classifications, they used 1808 images to train

their models and achieved a mean receiver operating charac-

teristic (ROC) of 96.51%, and for the three-class classification,

they used 6100 images and achieved a macro averaged F1

score of 94.10%. Khan et al. developed a CoroNet based on

the pre-trained Xception model to identify COVID-19 and

pneumonia [24]. For 3 class classification, their model

achieved an accuracy of 95% and for 4 class (Normal vs

COVID-19 vs bacterial vs Viral Pneumonia) achieved a preci-

sion and recall of 93% and 98.2% respectively. Nahiduzzaman

et al. extracted the most discriminant features using a hybrid

CNN-PCA from the CXR images to detect multivariant pneu-

monia [25]. They used ELM to discriminate viral pneumonia

from bacterial pneumonia. For enhancing the contrast of

the images, they used contrast limited adaptive histogram

equalization (CLAHE) and trained their model using 5857

images and achieved an accuracy of 99.83% and 98.32% for

two (Normal vs Pneumonia) and three-class (Normal vs bacte-

rial vs Viral Pneumonia) classifications. Yamac et al. devel-

oped a convolutional sparse support estimator network

based on a neural network to detect COVID-19, viral, and bac-

terial pneumonia from CXR images [26] using 6200 images

and achieved an accuracy of 87.07% for a four-class classifica-

tion, while 95.90% for COVID-19. Chandra et al. developed an

automatic screening model to detect COVID-19 and pneumo-

nia from CXR images [27]. 2,088 images were used for training

the ML models and achieved the highest accuracy of 91.329%

using support vector machine (SVM) with linear kernel.

Nahiduzzaman et al. proposed a model ChestX-ray6 based

on CNN to detect pneumonia from other lung-related dis-

eases and achieved an accuracy of 97.60% [28]. Que et al. used

U-NET and DenseNet to detect cardiomegaly disease from

CXR images [29] through performing segmentation using U-

NET and marking two separate parts namely cardiac and tho-

racic. By using augmentation, 2,630 images were produced for

training their models and achieved the highest area under the

receiver operating characteristics (AUROC) of 93.48% and

accuracy of 93.75% for U-NET. On the contrary, Robiul et al.

proposed an ensemble model based on ML models to detect

COVID-19 with an optimistic accuracy of 99.73% [30]. Serte

and Serener used a pre-trained ResNet model to classify pleu-

ral effusions (PE) from TB, pneumonia, and COVID-19 diseases

[31]. They correctly detected PE with an accuracy of 99%, 75%,

and 100% from pneumonia, TB, and COVID-19, respectively.

For multiclass classification, they achieved an average accu-

racy of 83%. Sahlol et al. extracted the 50,000 features using

a pre-trained MobileNet model from CXR images to detect

TB disease [32]. They used an artificial ecosystem-based opti-

mization algorithm to select 25 and 19 relevant features from

the datasets named Shenzhen (SZ) and Dataset 2, respec-

tively. Their proposed models outperformed the SOTA meth-

ods and achieved an accuracy of 90.20% and 94.10% for SZ

and Dataset 2, respectively. Chandra et al. developed a com-

puter aided diagnosis (CAD) system to detect TB disease from

CXR images [33]. First, a guided image filter was used for

image de-noising followed by lung segmentation. After fea-

ture extraction, SVM was employed for classification and

accuracies of 95.60% and 99.40% were achieved for Mont-

gomery (MT) and SZ datasets, respectively. Tawsifur et al.

used nine TL and two U-net models to detect TB from CXR

images [34]. Several databases were merged to create a single

database with 7,000 CXR images for training the proposed

model. They also performed augmentation and achieved

accuracies of 96.7% and 98.6% using ChexNet [35] and Dense-

Net201 [36] respectively. Furthermore, t-distributed stochastic

neighbor embedding [37] was used for data visualization.

Muhammad et al. used 7,000 CXR images for extracting the

features using three TL models [38] using the eXtreme Gradi-

ent Boosting [39] package to detect TB. Ayaz et al. combined

CNN based features and hand-crafted features through

ensemble learning to classify TB from CXR images [40]. They

achieved an AUROC [41] of 99% and 97% for the MT and SZ

datasets, respectively. Lopes and Valiati et al. used three TL

models to predict TB from CXR images [42] and achieved an

accuracy of 83.40% and 82.60% for MT and SZ datasets,

respectively.

From the above literature review, it was observed that

most of the studieswere limited to binary classeswith a small

amount of data in the datasets and failed to achieve promis-

ing performance particularly for multiclass classifications

with large numbers of data. Several DL and ML approaches

have been conducted, but most of them require high compu-

tational times and a large number of parameters. Further-

more, most of the studies detected COVID-19 with fewer

data because of the scarcity of COVID-19 CXR images. For

multiclass classification, the overall accuracy is again too

poor with a large number of parameters. The goal of the pro-

posed framework was to detect lung-related diseases with

novel contribution from extracting features using lightweight

CNN and classifying using extreme learning machine (ELM) to

obtain fewer parameters, low computational times, and high

classification performance.

The main contribution of this work is outlined as follows.
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1. Several databases have been combined to create a more

extensive database of eight diseases (CXR8), including COVID-

19, with different schemes, as shown in Table 1. In scheme 1,

eight classes have been considered; in scheme 2, four classes

have been considered; and so on. Binary classes such as Nor-

mal and Tuberculosis or Normal and COVID-19 were chosen

mainly to verify that the binary models could still produce

higher accuracy than the multiclass models [1].

2. A lightweight CNN model with three layers has been

proposed to extract features from 23,690 CXR8 images,

including 4,192 COVID-19 CXR images.

3. To reduce the complexity and increase the speed, the

PCC has been used to remove the redundant and irrelevant

features.

4. An ELM has been proposed to detect multiple lung-

related diseases. Consequently, the CNN-PCC-ELM model out-

weighs 28 SOTA models while reducing the parameters, com-

plexities, and processing times compared to the TL models.

5. The proposed framework was developed through differ-

ent schemes and achieved optimistic results in the case of

every circumstance, namely balanced and imbalanced, low-

resolution CXR images.

2. Proposed framework

Fig. 1 presents the proposed framework for detecting lung dis-

eases from the CXR images. First, for making multi-class clas-

sification, several image databases were combined to create

suitable customized databases. Then the resolutions of the

CXR images were converted to a uniform size and subse-

quently normalization was performed. After pre-processing,

a lightweight and straightforward CNN model was employed

to extract 512 features. A PCC algorithm was used to identify

195 prominent features by eliminating 317 irrelevant features.

These features were standardized using the z-score normal-

ization technique. Finally, an ELM model classified the fea-

tures to identify the lung diseases.

2.1. Database construction

Since the number of COVID-19 images in a particular publicly

availabledatabasewasnot so large, therefore, severaldatabases

were combined to create a customized database with a total of

4,192 COVID-19CXR images [13,43–47]. CXR images of 1,000 car-

diomegaly, 1,500 pleural, and 1,500 lung opacity diseases were

included in this study [48]. On theother hand, 1,037 CXR images

of tuberculosis diseasewere collected fromthreedifferentdata-

bases [49–51]. Bacterial and viral pneumonia CXR images were

differentiated fromtheKaggledatabase. Finally, theCXR images

of normal patients have been collected from two databases

[52,53]. Fig. 2 demonstrates the representative CXR images from

each class. Hence, a total of 23,690 CXR images were used to

construct eight classes where number of CXR images for nor-

mal, bacterial pneumonia, viral pneumonia, COVID-19, car-

diomegaly, pleural, lung opacity, and tuberculosis were 10,192;

2,777; 1,493; 4,192; 1,000; 1,500; 1,500 and 1,036 respectively.

Though the datasets were imbalanced, the proposed frame-

work performed satisfactorily in the case ofmulti-class classifi-

cation, which is revealed in the result section.

In this study, six types of ML schemes were considered to

evaluate the performance of the proposed framework.

Scheme 1 is a 8-class classification (normal, bacterial pneu-

Table 1 – Various schemes considered for lung disease classification.

Scheme 1
Normal Bacterial Pneumonia Viral Pneumonia COVID-19 Cardiomegaly Pleural Lung Opacity Tuberculosis
Scheme 2 Scheme 3
Normal COVID-19 Bacterial Pneumonia Viral Pneumonia Normal Bacterial Pneumonia Viral Pneumonia
Scheme 4 Scheme 5 Scheme 6
Normal Pneumonia COVID-19 Normal COVID-19 Normal Tuberculosis

Fig. 1 – Proposed framework for lung-related disease classification.
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monia, viral pneumonia, COVID-19, cardiomegaly, pleural,

lung opacity, tuberculosis), Scheme 2 is a 4-class classification

(normal, COVID-19, bacterial pneumonia, viral pneumonia),

Scheme 3 is a 3-class classification (normal, bacterial pneu-

monia, viral pneumonia), Scheme 4 is a 3-class classification

(normal, COVID-19, pneumonia), Scheme 5 is a 2-class classi-

fication (normal, COVID-19), and Scheme 6 is a 2-class classi-

fication (normal, tuberculosis). Since the proposed framework

was designed to achieve promising accuracy in case of multi-

class classification (3, 4 and 8), Scheme 5 was also imple-

mented to check whether the same framework could be

able to achieve higher classification performances in case of

Fig. 2 – Sample CXR images of (A) Normal, (B) Bacterial Pneumonia, (C) Viral Pneumonia, (D) COVID-19, (E) Cardiomegaly, (F)

Pleural, (G) Lung Opacity, and (H) Tuberculosis.

Table 2 – Datasets for different ML schemes with training and testing sets.

Scheme No Class type Disease Types Training Data Test Data

Scheme 1 8-class Normal 8,663 1,529
Bacterial Pneumonia 2,360 417
Viral Pneumonia 1,269 224
COVID-19 3,563 629
Cardiomegaly 850 150
Pleural 1,275 225
Lung Opacity 1,275 225
Tuberculosis 881 155
Total 20,136 3,554

Scheme 2 4-class Normal 8,153 2,039
COVID-19 3,354 838
Bacterial Pneumonia 2,222 555
Viral Pneumonia 1,194 299
Total 14,923 3,731

Scheme 3 3-class Normal 8,153 2039
Bacterial Pneumonia 2,222 555
Viral Pneumonia 1,194 299
Total 11,569 2,893

Scheme 4 3-class Normal 8,153 2,039
Pneumonia 1,194 299
COVID-19 3,354 838
Total 12,701 3,176

Scheme 5 2-class Normal 8,153 2,039
COVID-19 3,354 838
Total 11,507 2,877

Scheme 6 2-class Normal 8,153 2,039
Tuberculosis 829 207
Total 8,982 2,246
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binary classification. The first experiment with eight-class

classification was analyzed using a segregated 5-fold cross-

validation (CV) procedure to ensure the model’s performance

was not biased and the result was demonstrated in Sec-

tion 4.1. The training and testing ratios for the remaining

schemeswere 80:20, as themajority of SOTAmodels in the lit-

erature split data rather than using CV [22,23,25–27]. Table 2

shows the number of images per class split into training

and test set.

Since the databases were constructed from multiple

sources of CXR images, the resolutions of the imageswere dif-

ferent from each other. Hence, the CXR images were resized

to a dimension of 124 � 124. An image is represented by a

number of pixel values ranging from 0 to 255, which adds

complexity. To remove this complexity, normalization was

carried out by dividing each image by 255 and converting

the range within 0 to 1. Finally, the CXR images were ready

to feed into the CNN model for feature extraction.

2.2. Feature extraction

A lightweight CNN model was proposed for extracting new

features from the raw pixel values of the CXR images. It has

only three layers, fewer parameters than the TL model and

requires less processing time. On the contrary, the TL models

such as VGG19, ResNet50, ResNet152V2, InceptionResNetV2,

and DenseNet201 have 19, 50, 152, 164, and 201 layers respec-

tively. The proposed model has only 13.7 million parameters,

which is 11 times lower than the VGG19 model. Since the pro-

posed CNN model has fewer parameters and layers, the fea-

ture extractor CNN model is lightweight compared to the

other TL models. It is easy to use an end-to-end system as

Fig. 3 – A lightweight CNN model employed for extracting features.

Table 3 – List of layers, output shapes and parameters for the model during feature extraction.

Layer (Type) Shape of Output Parameters

conv1 (Conv2D) (None, 124, 124, 16) 1,216
bn1 (BatchNormalization) (None, 124, 124, 16) 64
av1 (Activation) (None, 124, 124, 16) 0
mp1 (MaxPooling2D) (None, 62, 62, 16) 0
conv2 (Conv2D) (None, 60, 60, 32) 4,640
bn2 (BatchNormalization) (None, 60, 60, 32) 128
av2 (Activation) (None, 60, 60, 32) 0
mp2 (MaxPooling2D) (None, 30, 30, 32) 0
conv3 (Conv2D) (None, 28, 28, 64) 18,496
bn3 (BatchNormalization) (None, 28, 28, 64) 256
av3 (Activation) (None, 28, 28, 64) 0
mp3 (MaxPooling2D) (None, 14, 14, 64) 0
dp1 (Dropout) (None, 14, 14, 64) 0
ft (Flatten) (None, 12544) 0
dense (Dense) (None, 1024) 12,846,080
bn4 (BatchNormalization) (None, 1024) 4,096
av4 (Activation) (None, 1024) 0
dp2 (Dropout) (None, 1024) 0
Feature Extraction (Dense) (None, 512) 524,800
Total Parameters 13,399,776
Trainable Parameters 13,397,504
Non-trainable Parameters 2,272

b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 3 ( 2 0 2 3 ) 5 2 8– 5 5 0 533



it does not require a separate modules for individual tasks

such as feature extraction, feature selection etc. However, it

has some limitations for instance an end-to-end cannot pro-

vide good accuracy with small amount of training data. Fig. 3

shows the architecture of the CNN model used in this study.

The size of the input CXR images was 124 � 124. The CNN

model was comprised of three convolutional layers (CL),

where each CL block consisted of a batch-normalization, an

activation, and a 2 � 2 max-pooling layer. Batch normaliza-

tion was utilized since it speeded up and stabilized the model

by re-centering and rescaling the layers’ inputs, as well as

reducing overfitting. In the first CL layer, the kernel size was

5 � 5 and the padding were the’same’ to check the border ele-

ments, which might contain important information. Addi-

tionally, the kernel size was kept relatively large in case any

significant lesions were detected in the CXR images that

needed to be collected readily. Following the initial pooling

layer with an input dimension of 62 � 62, the kernel size is

kept relatively small. The kernel size of the remaining CLs

was 3 � 3 and used the’valid’ padding. Basically, a custom

CNN-based TL model was developed in this work. Most of

the TL models used large kernel size at the beginning and

then the kernel size was reduced in the proceeding layers

[23] due to an initial large size of the CXR images and subse-

quent smaller sizes after each convolution layer.

To avoid gradient fading, a ReLU activation function was

utilized after each batch normalization layer [54]. Following

the final CL, two fully connected (FC) layers were employed,

which were determined by a trial and error procedure. The

first FC layer was 1,024 nodes dense, and the feature extrac-

tion was carried out from the final FC layer, which was 512

nodes deep. To reduce the complexity and overfitting, two

dropout layers were included and as a result, the training

speed increased significantly [55]. One dropout with a 0.3

probability was positioned after the last CL layer and another

one with a 0.5 probability before the feature extraction layer.

Since the amount of training data was large, the Adam opti-

mizer was employed as it could provide improved perfor-

mance for a large training dataset [56]. In order to extract

the distinctive features, the model was run with the following

parameters: 50 epochs; 32 batch size and 0.001 learning rate.

Finally, a total of 512 important features were extracted from

the last FC layer. Table 3 shows a summary of the CNN model

employed. To begin, a large number of features were retrieved

in order to minimize underfitting. Additionally, PCC was

employed to eliminate redundant features from the derived

ones in order to account for the overfitting and to improve

classification accuracy.

2.3. Feature selection

In the current era of ML, data is very important. Every piece of

information which is measurable and involved in recognizing

a phenomenon or a circumstance is called a feature. To recog-

nize each phenomenon individually, there might be a large

number of features available in the real world. However, all

the features are not highly related to the outcome [57]. Huge

feature space makes the learning process of a ML algorithm

slow and increases computational complexity. Hence, it is

required to find out the optimal feature subset to resolve

these issues through feature selection. Amongmany available

FS strategies, PCC based FS technique could help in identify-

ing distinctive features. Best feature subspace was selected

from the feature extracted using the CNN for reducing com-

plexity and increasing the performance and processing speed

[57]. Correlation coefficients (CC) of all the features were

determined and the first one of each pair containing a CC

value above the threshold were eliminated. Finally, the stan-

dard scaler has been used to standardize the extracted fea-

tures performed by subtracting the mean and scaling to

mean–variance. Standardization features could help in

achieving better classification performance [59,60]. The equa-

tion for the standard score for sample x [60]

y ¼ x� x
�

r
ð1Þ

Where x
�
is the mean of the samples and r is standard devi-

ation of the samples.

Algorithm 1: Feature Selection using Pearson Correlation
Coefficient
1: CorrMatrix = Features.cor ()
2: for i in range(len(CorrMatrix.columns)):
3: for j in range(i):
4: If abs (CorrMatrix.iloc[i, j]) > threshold:
5:
6:

ColName = CorrMatrix.columns[i]
ColCorr.add(ColName)

7: Features.drop(ColCorr)

2.4. Extreme learning machine

Hunag proposed ELM [61], which is a neural network (NN)

based on a forward feed network. A single hidden layer has

been used to classify the extracted features. Normally, ELM

has shown optimistic results in case of multiclass classifica-

tion and since there is no backpropagation needed in ELM,

hence it also requires less time compared to the traditional

NN or DL models. The training time was a thousand times

faster than the traditional NN and achieved better generaliza-

tion power due to the absence of backpropagation and higher

classification performance [61–64]. The parameters between

the input layer to the hidden layer were derived arbitrarily

whereas the hidden layer to output layer parameters were

derived using pseudoinverse. Fig. 4 demonstrates the basic

architecture of ELM model used in this study.

The number of hidden nodes and the parameters for this

study are shown in Table 4, where the hidden layer nodes

were selected through trial-and-error method. The model

would get overfitted if more hidden nodes were added, while

if fewer hidden nodes were utilized, then the model would be

under fitted. Consequently, in this study, adequate hidden

nodes had employed, which produced promising classifica-

tion results that resolved both the overfitting and underfitting

issues. For the eight-class classification, the total trainable

parameters were 13,397,504 for extracting the features using

CNN and for classification, whereas the total number of

parameters of ELM were 304,500, hence the total parameters

were summed up to 13,702,004.
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Algorithm 2: Extreme learning machine

Xðn;mÞ ¼

xð1;1Þ xð1;2Þ � � � xð1;mÞ
xð2;1Þ xð2;2Þ � � � xð1;mÞ
xð3;1Þ xð3;2Þ � � � xð1;mÞ
..
. ..

. . .
. ..

.

xðn;1Þ xðn;2Þ � � � xðn;mÞ

2
666664

3
777775
Yðn;tÞ ¼

yð1;1Þ yð1;2Þ � � � yð1;tÞ
yð2;1Þ yð2;2Þ � � � yð1;tÞ
yð3;1Þ yð3;2Þ � � � yð1;tÞ
..
. ..

. . .
. ..

.

yðn;1Þ yðn;2Þ � � � yðn;tÞ

2
666664

3
777775

Here, X and Y be the feature and target matrix.

1. Randomly generates the input weight W ðm;NÞ and bias Bð1;NÞ matrix.W ðm;NÞ ¼
wð1;1Þ wð1;2Þ � � � wð1;NÞ
wð2;1Þ wð2;2Þ � � � wð1;NÞ
wð3;1Þ wð3;2Þ � � � wð1;NÞ
..
. ..

. . .
. ..

.

wðm;1Þ wðm;2Þ � � � wðm;NÞ

2
666664

3
777775
Bð1;NÞ ¼ bð1;1Þ bð1;2Þ � � � bð1;NÞ

� �

2. Determine the output H ðn;NÞ of the hidden layer.H ðn;NÞ

¼ GðX ðn;mÞ � W ðm;NÞ þ Bð1;NÞÞHðn;NÞ ¼

hð1;1Þ hð1;2Þ � � � hð1;NÞ
hð2;1Þ hð2;2Þ � � � hð1;NÞ
hð3;1Þ hð3;2Þ � � � hð1;NÞ
..
. ..

. . .
. ..

.

hðn;1Þ hðn;2Þ � � � hðn;NÞ

2
666664

3
777775
Here, G is the activation function.

3. Determine the output weight matrix bðN ;tÞbðN ;tÞ ¼ H y
ðN ;nÞ � T ðn;tÞ

4. Make prediction using bðN ;tÞ

3. Results and analysis

3.1. Evaluation matrices

To assess the performance of the proposed ML models, a

number of metrics such as accuracy, precision, recall, f1-

score, and AUC were considered. The metrics can be defined

by Equation (2) to Equation (6) [65,66]:

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
ð2Þ

Precision ¼ TP

TP þ FP
ð3Þ

Recall ¼ TP

TN þ FP
ð4Þ

F1� Score ¼ 2� Precision� Recallð Þ
Precisionþ Recall

ð5Þ

AUC ¼ 1
2
ð TP

TP þ FN
þ TN

TN þ FP
Þ ð6Þ

Where TP, TN, FP and FN, denote true positives, true nega-

tives, false positives, and false negatives, respectively.

3.2. Environmental setup

Python programming language was used to write the codes,

which were run on PyCharm Community Edition (2021.2.3)

software. The CNN model was implemented using Keras with

TensorFlow as the backend for the feature extraction. The

ELM models were trained and tested on a PC with a 11th gen-

eration Intel(R) Core (TM) i9-11900 CPU @2.50 GHz, 32 GB RAM,

and an NVIDIA GeForce, RTX 3090 24 GB GPU, running on a 64-

bit Windows 10 Pro operating system. The code is available at

https://github.com/NahiduzzamanRuet/ChestX-Ray8/blob/

main/ChestX-Ray8.py.

In this study, all the schemes were performed using two

models. In the first model, after the pre-processing, a light-

weight CNN was applied to extract the 512 features, which

were standardized. After feature standardization, the ELM

was used to classify different lung diseases, and the model

was named as CNN-ELM.

In the secondmodel, after the extractionof 512 features and

performing standardization on the features, PCC was

employed on the extracted features to eliminate the redundant

features and to select themost discriminant ones. Finally, clas-

sification was carried out by the ELM, and the model was ter-

med as CNN-PCC-ELM. Table 5 shows the PCC values and the

Fig. 4 – The architecture of Extreme Machine Learning.
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extracted features for different schemes. The PCC threshold

value was selected using a trial-and-error method. For

Scheme 1 (8 classes), whichwas a large class, a threshold value

of 0.82 produced the most promising results than other PCC

values either higher or lower. For instance, for large classes

(8-classes) like the Scheme 1, with a higher value than the

threshold value would increase the number of unnecessary

redundant features causing less accurate results. Similarly, a

lower PCC value than the threshold value would reduce the

numberof discriminant features leading topoor quality results

again. In the cases of smaller classes (4, 3, and 2 classes), a

slightly lower PCC value provided the best prominent features

for effective and accurate detection of the diseases.

3.3. Results for Scheme 1

For Scheme 1, a total of 20,136 data were employed to train

the CNN, CNN-ELM and CNN-PCC-ELMmodels, and 3,554 data

were employed to assess the proposed framework’s perfor-

mance. A confusion matrix (CM) was used to calculate the

precision, recall, and accuracy of the CNN, CNN-ELM models

as shown in Fig. 5A.

The average precision, recall, and accuracy of the CNN

model were 0.75, 0.73 and 85%, respectively. However, the

average precision, recall, and accuracy of the CNN-ELMmodel

were recorded as 0.95, 0.88, and 93.19%, respectively (Table 6).

The CNN-ELM model used 512 features that were too high.

Therefore, the redundant and irrelevant features were

removed for improving the classification performance.

After extracting the 512 features using CNN, a PCC was

used to eliminate a total of 317 redundant features leaving

behind a total of 195 most prominent features. Finally, the

ELM model was used for the classification, and the CNN-

PCC-ELM model performance was calculated using a CM as

shown in Fig. 5B. It was noticed that the proposed framework

demonstrated a significantly increased accuracy of 96.22%,

which was approximately 11% higher than the CNN and 3%

higher than the CNN-ELM model. It shows that an end-to-

Fig. 5 – CMs for scheme 1: (A) CNN-ELM and (B) CNN-PCC-ELM.

Table 5 – PCC value and extracted features.

Scheme No PCC Value Features of CNN-ELM Features of CNN-PCC-ELM

Scheme 1 0.82 512 195
Scheme 2 0.80 512 60
Scheme 3 0.80 512 72
Scheme 4 0.80 512 59
Scheme 5 0.80 512 45
Scheme 6 0.80 512 29

Table 4 – Parameters of ELM for Different Schemes.

Scheme Total Nodes in Input Layer Total Nodes in Hidden Layer Total Nodes in Output Layer Total No of Parameters

Scheme 1 195 1,500 8 304,500
Scheme 2 60 700 4 44,800
Scheme 3 72 400 3 30,000
Scheme 4 59 300 3 18,600
Scheme 5 45 300 1 13,800
Scheme 6 29 400 1 12,000
Activation Function ReLU
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end model performs poorly with relatively smaller dataset.

The recall of CNN-PCC-ELM also increased by 6% compared

to the CNN-ELM, model demonstrating the robustness in the

model’s classification performance. In biomedical engineer-

ing, the recall must be high enough so that the patient with

lung diseases must be correctly detected. Since the redundant

and unnecessary features confused the model and reduced

the classification performance, after removing the duplicate

and irrelevant features, the model’s performance increased

with reduced complexity. Additionally, despite imbalance in

the dataset, each class contributed equally (precision and

recall almost higher than 91% and 84% respectively for each

class) to the final outcome. The class wise ROC values for both

the models presented in Fig. 6 demonstrated that the models’

discriminant capabilities for each class indicating consistency

of the models even with an unbalanced dataset. The calcu-

lated average AUCs of the CNN-ELM and CNN-PCC-ELM were

recorded as 99.10% and 99.48% respectively clearly indicating

the superiority of the latter.

To demonstrate the superior performance of the proposed

framework in the case of the multiclass environment, the

same dataset was used for training and testing the five TL

models: VGG19, ResNet50, ResNet152V2, InceptionResNetV2,

and DenseNet201. The ROCs of the TL models are presented

in Fig. 7.

The AUCs of VGG19, ResNet50, ResNet152V2, Incep-

tionResNetV2, and DenseNet201 were 98.61%, 93.08%,

98.42%, 98.30%, and 99.07%, respectively. Table 7 shows aver-

age precision, recall, and f1-score of the TL models. The accu-

racies of VGG19, ResNet50, ResNet152V2, InceptionResNetV2,

and DenseNet201 were 74.20%, 64.02%, 73.05%, 70.45%, and

74.30%, respectively, whereas the accuracy of CNN-PCC-ELM

was 96.22%, which was almost 20% higher than the TL mod-

els. The CNN-PCC-ELM model achieved a promising result

because the CNN was used to extract the discriminant fea-

tures. PCC was applied to find the irrelevant and redundant

features that contained insignificant information, which

could reduce the model’s performance. Hence, the ELMmodel

showed a favorable result with CNN-PCC for feature extrac-

tion and selection.

The CNN has three convolutional layers, and ELM has

three layers; hence there are only six layers. On the contrary,

the TL models VGG19, ResNet50, ResNet152V2, Incep-

tionResNetV2, and DenseNet201 have 19, 50, 152, 164, and

201 layers respectively. The proposedmodel has only 13.7 mil-

lion parameters, which is 11 times lower than the VGG19

model. Since the proposed CNN model has fewer parameters

and layers, the features extractor CNN model is lightweight

compared to the other TL models. From Table 8, it should be

noted that it took 406 s to extract the 512 features using the

CNN. Only 39 s were taken to remove the features using PCC

and train the ELM. Therefore, the training time of the CNN-

PCC-ELM model was only 445 s, whereas some of the TL mod-

els’ training times were almost four times greater than the

proposed model. The proposed framework took only

0.0156 s to test, whereas the InceptionResNetV2 TL model

took 7.3505 s, which was relatively higher. The accuracy of

the proposed framework (96.22%) was significantly higher

than the accuracy of the TL models.

Fig. 8 shows a comparison of classification performance of

the CNN-PCC-ELM model with the TL models. The recall and

accuracy of the proposed framework were 0.94 and 96.22%,

Fig. 6 – ROC curve for Scheme 1: (A) CNN-ELM and (B) CNN-PCC-ELM.

Table 6 – Classification performance results of Scheme 1.

Type of lung diseases Precision Recall F1-score Accuracy (%)

CNN CNN-ELM CNN-PCC-ELM CNN CNN-ELM CNN-PCC-ELM CNN CNN-ELM CNN-PCC-ELM CNN CNN-ELM CNN-PCC-ELM

Normal 0.96 0.89 0.96 0.99 1.00 1.00 0.97 0.94 0.98 – – –
Bacterial Pneumonia 0.87 0.96 0.97 0.79 0.89 0.91 0.82 0.93 0.94 – – –
Viral Pneumonia 0.66 0.92 0.91 0.73 0.84 0.94 0.70 0.88 0.92 – – –
COVID-19 0.91 0.99 1.00 0.93 0.96 0.99 0.92 0.97 1.00 – – –
Cardiomegaly 0.64 0.98 0.97 0.45 0.79 0.93 0.53 0.88 0.95 – – –
Pleural 0.55 0.95 0.92 0.41 0.84 0.90 0.47 0.89 0.91 – – –
Lung Opacity 0.46 0.93 0.93 0.61 0.78 0.84 0.52 0.85 0.88 – – –
Tuberculosis 0.99 1.00 1.00 0.92 0.92 0.99 0.95 0.96 1.00 – – –
Average 0.75 0.95 0.96 0.73 0.88 0.94 0.74 0.91 0.95 85 93.19 96.22
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which were greater than that of the other TL models. From

Fig. 7, it was also noticed that the ROC of CNN-PCC-ELM

(99.48%) was again better than ROCs of the VGG19, ResNet50,

ResNet152V2, InceptionResNetV2, and DenseNet201 models

(98.61%, 93.08%, 98.42%, 98.30%, and 99.07% respectively).

Since the ROC curve shows how well a classification model

performs across all categorization levels, it can be concluded

that the proposed framework shows its robustness in every

performance criterion.

From the above results, it was clear that the proposed

CNN-PCC-ELM model achieved a higher classification perfor-

mance with reduced processing time, parameters, and layers

compared to the TL models. Therefore, it is safe to conclude

that in the case of multiclass classification, the proposed

CNN-PCC-ELM is superior to the other TL models based on

all types of performance criteria.

3.4. Results for Scheme 2

In this scheme, COVID-19 was detected from normal, bacte-

rial, and viral pneumonia with a four-class classification.

The CNN-ELM was trained using 14,923 data with 512 fea-

Fig. 7 – ROC curves for TL models in Scheme 1: (A) VGG19, (B) ResNet50, (C) ResNet152V2, (D) InceptionResNetV2 and (E)

DenseNet201.
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tures. To calculate the model’s classification performance

3,731 data was used where the number of normal, COVID-

19, bacterial, and viral pneumonia data were 2,039, 838, 555,

and 299, respectively. The classification result was calculated

from the CMs shown in Fig. 9.

The recall and accuracy of the CNN-ELM were 0.90 and

94.67% as shown in Table 9. After removing the redundant

features, the CNN-PCC-ELM model was trained using the

same data but with only 60 features. The CNN-PCC-ELM

achieved an accuracy of 96.57%, which was approximately

2% higher than the accuracy of the CNN-ELM model.

The AUCs of the CNN-PCC-ELM (99.57%) was slightly better

than that of the CNN-ELM (99.41%) and Fig. 10 demonstrates

the class-wise ROCs of both the models.

3.5. Results for Scheme 3

In this scheme, multivariate pneumonia was detected by

training the CNN-ELM models with 11,569 data having 512

features. A total of 2,893 data was used for testing the model

and calculating the classification performance. In the second

stage, the CNN-PCC-ELM model was trained using the same

Fig. 9 – CMs for Scheme 2: (A) using CNN-ELM and (B) using CNN-PCC-ELM.

Table 8 – Comparing performance of CNN-PCA-ELM with VGG19, ResNet50, ResNet152V2, InceptionResNetV2, and
DenseNet201.

Models Accuracy (%) No. of Layers Parameters (million) Training Time (sec) Testing Time (sec)

VGG19 76.53 19 143.6 563 1.9710
ResNet50 68.94 50 25.6 626 2.4319
ResNet152V2 77.52 152 60.3 1512 5.8072
InceptionResNetV2 69.36 164 55.8 1888 7.3505
DenseNet201 77.12 201 20.2 1491 4.4138
CNN-PCC-ELM 96.22 3 + 3 13.7 445 0.0156

Table 7 – Results of Scheme 1 for VGG19, ResNet50, ResNet152V2, InceptionResNetV2, and DenseNet201.

TL models Precision Recall F1-score Accuracy (%)

VGG19 0.72 0.60 0.63 76.53
ResNet50 0.61 0.50 0.51 68.94
ResNet152V2 0.67 0.63 0.64 77.52
InceptionResNetV2 0.58 0.60 0.58 69.36
DenseNet201 0.68 0.67 0.65 77.12

Fig. 8 – Classification performance comparison between

CNN-PCC-ELM and the TL models for Scheme 1.
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data having 72 features, which was also used for testing the

model. The accuracy of the CNN-PCC-ELM model (97.33%)

was almost 3% higher than that of the CNN-ELM model

(94.61%) as demonstrated in Table 10. The average precision,

recall, and F1-score of the CNN-PCC-ELM models were also

found to be better than that of the CNN-ELM model.

Fig. 11 shows the CMs for both the CNN-ELM and CNN-

PCC-ELM models.

The AUC value of the CNN-PCC-ELM model (99.33%) was

also superior to that of the CNN-ELM model (98.41%) as

demonstrated by the class wise ROC curves presented in

Fig. 12.

3.6. Results for Scheme 4

In this study, the main focus was to detect COVID-19 from dif-

ferent other lung diseases. Scheme 4 was designed to detect

COVID-19 from pneumonia with a three-class classification.

A total of 12,701 data with 512 features was used for training

the CNN-ELMmodel and for assessing the performance of the

model, 3,176 data was used. In the previous studies, a small

number of COVID-19 CXR images were used, whereas 4,192

CXR images were employed in this study. The CNN-ELM

model achieved an accuracy of 97.42% and a precision of

98% (Table 11). The CNN-PCC-ELM model achieved an opti-

mistic accuracy of 99.55%, with a precision, recall and f1-

score of 99% while testing the model using the same testing

data with only 59 features. The performance criterion for

Scheme 4 was calculated from the CMs shown in Fig. 13.

The AUCs of the CNN-ELM and CNN-PCC-ELM were 99.96%

and 99.97%, respectively (Fig. 14).

3.7. Results for Scheme 5

In this scheme, COVID-19 was detected from the normal

patient as a binary classification. The CNN-ELM model was

trained using 11,507 data with 512 features and performance

was measured by testing the model using 2,877 data. The

accuracy and recall of the CNN-ELM model were 96.66% and

97%, respectively as shown in Table 12. In the second stage,

PCC has been used for eliminating 467 features and the pro-

posed CNN-PCC-ELM model achieved an accuracy of 98.82%

while testing with 45 features.

Table 10 – Classification performance results of Scheme 3.

Type of lung diseases Precision Recall F1-score Accuracy (%)

CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM

Normal 0.95 0.99 1.00 0.99 0.97 0.99 – –
Bacterial Pneumonia 0.92 0.93 0.91 0.95 0.91 0.94 – –
Viral Pneumonia 0.96 0.92 0.68 0.88 0.80 0.90 – –
Average 0.94 0.95 0.86 0.94 0.90 0.94 94.61 97.34

Fig. 10 – ROC curves for Scheme 2: (A) CNN-ELM and (B) CNN-PCC-ELM.

Table 9 – Classification performance results of Scheme 2.

Type of lung diseases Precision Recall F1-score Accuracy (%)

CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM

Normal 0.93 0.97 0.99 0.99 0.96 0.98 – –
COVID-19 0.97 0.97 0.94 0.97 0.95 0.97 – –
Bacterial Pneumonia 0.95 0.95 0.91 0.94 0.92 0.95 – –
Viral Pneumonia 0.97 0.94 0.76 0.83 0.85 0.88 – –
Average 0.96 0.96 0.90 0.97 0.92 0.97 94.67 96.57
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The performance criterion for Scheme 5 was calculated

from the CMs shown in Fig. 15.

The AUC values of the CNN-ELM and CNN-PCC-ELM mod-

els were 99.81% and 99.88%, respectively and again this

showed superior performance of the CNN-PCC-ELM model

(Fig. 16).

3.8. Results for Scheme 6

In this final scheme, the tuberculosis disease was detected

from the normal patient. In this case, 8,982 data with 512 fea-

tures was used to train the CNN-ELM model and achieved an

accuracy of 98.13% and a precision of 99% (Table 13 and

Fig. 17) and an AUC of 99.95% (Fig. 18A).

After removing 483 irrelevant features, the CNN-PCC-ELM

model was tested using 2,246 data with only 29 features and

achieved an accuracy of 99.51% and an AUC of 100% which

are shown in Table 13 and Fig. 18(B).

3.9. Comparison between the six schemes

From Fig. 19, it was identified that in every scheme, the CNN-

PCC-ELM performed better than the CNN-ELM model. The

Table 11 – Classification performance results of Scheme 4.

Type of lung diseases Precision Recall F1-score Accuracy (%)

CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM

Normal 0.97 1.00 1.00 1.00 0.98 1.00 – –
Pneumonia 1.00 0.99 0.95 0.99 0.98 0.99 – –
COVID-19 0.99 0.99 0.93 1.00 0.96 0.99 – –
Average 0.98 0.99 0.96 0.99 0.97 0.99 97.42 99.55

Fig. 11 – CMs for Scheme 3: (A) CNN-ELM and (B) CNN-PCC-ELM.

Fig. 12 – ROC curves for Scheme 3: (A) CNN-ELM and (B) CNN-PCC-ELM.
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CNN-ELM model used 512 features while the CNN-PCC-ELM

model used 195, 60, 72, 59, 45, and 29 features for Schemes

1, 2, 3, 4, 5, and 6, respectively, which were selected by elim-

inating the redundant features resulting in better classifica-

tion performance. Hence, the results demonstrated that PCC

removed the duplicate and irrelevant features efficiently

and this was reflected in the improved classification perfor-

mance with less complexity of the CNN-PCC-ELM model.

4. Performance comparison and discussions

4.1. Comparison of CNN-PCC-ELM with ResNet50-PCC-
ELM and VGG19-PCC-ELM

In this section, a 5-fold CV was applied to the CNN-PCC-ELM

(CPE) model to determine the effect on the outcomes. The

classification performance of each fold was compared with

Fig. 13 – CMs for Scheme 4: (A) CNN-ELM and (B) CNN-PCC-ELM.

Fig. 14 – ROC curves for Scheme 4: (A) CNN-ELM and (B) CNN-PCC-ELM.

Table 12 – Classification performance results of Scheme 5.

Type of lung diseases Precision Recall F1-score Accuracy (%)

CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM

Normal 0.99 0.99 0.98 0.99 0.98 0.99 – –
COVID-19 0.97 0.98 0.96 0.98 0.96 0.98 – –
Average 0.99 0.99 0.97 0.99 0.98 0.99 96.66 98.82
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ResNet50-PCC-ELM (RPE) and VGG19-PCC-ELM (VPE) as shown

in Table 14.

The highest accuracy of 75.69% and AUC of 91.9% were

obtained from Fold 5, when employing RPE and the highest

accuracy of 89.91% and AUC of 97.9% were obtained from

the same fold utilizing VPE. On the other hand, the proposed

CPE attained an optimistic accuracy of 98.12% (almost 9%

higher than the VPE model) and AUC of 99.7% (almost 2%

higher than the VPE) from the same fold. Following PCC, the

RPE and VPE contained just nine and three redundant charac-

teristics, respectively. Thus, the RPE and VPE models required

503 and 509 features, respectively, whereas the CPE model

required only 195 features. As a result, the CPE model (445 s)

needed shorter processing time than the VPE (609 s) and RPE

(686 s) models. Since pre-trained ResNet 50 and VGG 19 were

not trained for specific CXR images hence their features

extraction capabilities for the CXR images were limited.

Whereas the CXR images were specifically employed to train

the proposed CNN model that resulted in extracting discrim-

inant features leading to an improved the performance. As

shown in Fig. 20, the suggested CPE model was adaptable

and flexible in terms of classification performance and pro-

cessing time.

4.2. Comparison with SOTA models

This section compared different schemes with the existing

SOTA methods as shown in Table 15. Scheme 1 was a new

merged dataset; hence, it could not be compared with other

SOTA methods. CNN-PCC-ELM model performed better with

this new merged dataset compared with different TL models

as evidenced in Section 3.3 and Section 4.1. For scheme 2, the

best performances were achieved by Rashid et al. in classify-

ing four types of diseases (normal-COVID-19-bacterial-viral

pneumonia) with an accuracy, recall, and precision of

90.13%, 90.13%, and 90.13%, respectively [86]. On the contrary,

the proposed framework achieved an accuracy of 96.57%,

almost 6% higher than their model, and a recall of almost

7% (97%) higher, demonstrating the model’s robustness for

scheme 2.

For Scheme 3, therewas not much work performed to clas-

sify bacterial pneumonia from the viral pneumonia. The

authors [25] published a study to detect the multivariate

pneumonia where the 99.01 % AUC was achieved from the

model and this value was greater than that of prior studies.

However, the accuracy (97.34%) in this work was slightly lower

than the most recent work and the previous model (98.32%)

[25]. The discriminating ability of the proposed model (AUC

of 99.33%) was remarkable compared to the prior works

demonstrating its robustness in the detection of lung dis-

eases. The main contribution could be differentiated in a

way that in contrast to two types of pneumonia in the previ-

ous work, a maximum seven types of lung diseases including

COVID-19 were considered with a large amount of data in the

datasets in this work.

Fig. 16 – ROC curves for Scheme 5: (A) CNN-ELM and (B) CNN-PCC-ELM.

Fig. 17 – CMs for Scheme 6 (A) CNN-ELM and (B) using CNN-

PCC-ELM.

Fig. 15 – CMs for Scheme 5: (A) CNN-ELM and (B) CNN-PCC-

ELM.
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For Scheme 4, several studies were carried out to detect

COVID-19 from pneumonia patients. Only the latest works

were used for comparison in the table. The proposed model

achieved a 100% precision and AUC of 99.97%, surpassing

the seventeen SOTAmethods for the three-class classification

(normal-pneumonia-COVID-19). Besides this, Patro et al.

developed a custom SCovNet based on CNN, which achieved

the highest accuracy of 97.99% among the other SOTAmodels.

In contrast, the proposed CNN-PCC-ELM achieved a satisfac-

tory accuracy of 99.55%, almost 2% higher than their model

[72]. Azam et al. had the best precision and recall results

out of all the SOTA models, coming in at 99.02% and 98.26%,

respectively [77]. The proposed CNN-PCC-ELM outweighs

their precision (100%) and recall (99%).

Scheme 5 has been one of the most important focuses for

researchers in the last three years. For the classification of

COVID-19 from the regular patients with the help of CXR

images, Joshi et al. achieved an optimistic accuracy of

99.81% but the recall was 98.45% which was slightly lower

than the proposedmodel [82]. The proposedmodel performed

a promising result with an optimistic AUC and recall of

99.89% and 99%, respectively which outperformed the exist-

ing nineteen SOTAmodels. Tuberculosis, one of themost dan-

gerous lung-related diseases, was also detected accurately in

Fig. 19 – Performance comparison graph between CNN-ELM and CNN-PCC-ELM models for different schemes.

Fig. 18 – ROC curves for Scheme 6: (A) CNN-ELM and (B) CNN-PCC-ELM.

Table 13 – Performance Classification results of Scheme 6.

Type of lung diseases Precision Recall F1-score Accuracy (%)

CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM CNN-ELM CNN-PCC-ELM

Normal 0.99 1.00 0.99 1.00 0.99 1.00 – –
Tuberculosis 0.97 0.97 0.90 0.98 0.94 0.97 – –
Average 0.99 1.00 0.98 1.00 0.98 1.00 98.13 99.51
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this study. The proposed model detected the tuberculosis dis-

ease from the regular patient with a precision and recall of

99% greater than the nine latest methods reported. For

Scheme 6, the CNN-PCC-ELM model achieved an accuracy of

99.51% and an AUC of 100%, which were again much better

than other SOTA models.

Additionally, it should be noted that although the majority

of SOTA models required high-quality images (227 � 227;

224 � 224) to identify certain disorders, the proposed model

employed low-resolution images (124 � 124) to detect the dis-

criminating features [13,32,58,73,78,79,81]. As the number of

pixels in the input CXR images are decreased, the complexity

of the model is proportionately decreased as well.

As a result of the above discussion, it can be concluded

that the suggested CNN-PCC-ELM model outperformed the

selected 53 SOTAmodels available in the literature for various

schemes that ensured efficiency and accuracy in diagnosing

numerous lung illnesses with small number of features and

low-resolution input CXR images.

Table 15 depicts that as the number of classes decreased,

the model’s performance improved. However, the accuracy of

Scheme 5 was worse than the Scheme 6 even though both

schemes fell in the category of binary class. This could be due

to the differences in disease varieties and diverse features

between the schemes. Similar arguments can also be reasoned

for thedifference inaccuracybetweenScheme3andScheme4.

The number of redundant features increased from higher to

the lower-class schemes (Table 5) and thenumberof redundant

features can fluctuate depending on the disease types. As a

result, training models for different schemes or datasets with

the same number of features was not a wise move.

Using a number of deep TL models, the majority of

researchers showed a favorable outcome in the detection of

lung diseases in the past several years. However, the TL mod-

els required longer processing times because of their larger

number of parameters and layers. The main goal of this study

was to develop a lightweight CNN model with fewer parame-

ters and layers, which would reduce the processing time com-

pared to the conventional TL models. Therefore, the relevant

features were extracted using a basic CNN model and unnec-

essary features were removed by employing PCC. The combi-

nation of CNN’s feature extraction, PCC’s most notable

feature selection and ELM model’s classification capabilities

outperformed the earlier SOTA models and maintained high

accuracy even in the presence of imbalanced datasets as well

as low quality CXR images. Therefore, it can be argued that

the proposed framework will ensure processing efficiency

and correctness in faster detecting the lung diseases.

This study also solved another challenging task of detect-

ing lung diseases from the subtle appearance of illness signs

Fig. 20 – Classification performance comparison between CNN-PCC-ELM and the ResNet50-PCC-ELM, VGG19-PCC-ELM

models for Scheme 1.

Table 14 – Performance comparison of CNN-PCC-ELM with ResNet50-PCC-ELM and VGG19-PCC-ELM.

Precision Recall Accuracy AUC

RPE VPE CPE RPE VPE CPE RPE VPE CPE RPE VPE CPE

Fold1 0.66 0.87 0.96 0.57 0.80 0.96 75.26 89.19 97.78 0.909 0.980 0.996
Fold2 0.65 0.88 0.96 0.57 0.81 0.95 74.91 89.82 97.36 0.915 0.979 0.995
Fold3 0.65 0.87 0.96 0.57 0.80 0.96 74.55 89.80 97.83 0.911 0.981 0.996
Fold4 0.65 0.86 0.96 0.57 0.80 0.96 74.84 88.62 97.72 0.911 0.981 0.997
Fold5 0.66 0.87 0.97 0.58 0.81 0.96 75.69 89.91 98.12 0.919 0.979 0.997
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in the CXR images, which may be difficult for the radiologists

to distinguish. Sometimes these modest radiographic charac-

teristics of various diseases such as TB, pneumonia, opacity,

and others also mislead the classifier, reducing the system’s

diagnostic performance, as highlighted in previous studies

[27]. This study considered eight lung-related diseases

Table 15 – Performance comparison with previous studies.

Scheme No Reference No. of Classes Precision Recall Accuracy AUC

Scheme 2 [24] 4 89.84% 89.94% 89.6% –
[26] – 79.79% 87.07% –
[71] 90% 87.75% 89.89% –
[82] 80.92% 85.66% 76.46% –
[86] 90.13% 90.13% 90.13% –
CNN-PCC-ELM 96% 97% 96.57% 99.45%

Scheme 3 [25] 3 99% 98% 98.32% 99.01%
[67] 93.7% 93.2% 93.3% 95.00%
CNN-PCC-ELM 95% 94% 97.34% 99.33%

Scheme 4 [27] 3 – – 93.41% –
[12] – – 72.6% –
[22] – 86.7% 92.53%
[14] 97.95% 97.94% 97.94% –
[23] 92.70% 92.70% 95.99% –
[68] 93.33% 93.33% 93.3% –
[69] 96.33% 93% 97.97% –
[8] 94.8% – 94.4% 94.4%
[72] 98.05% 98.02% 97.99% 99.41%
[76] 95% 95% 97.41% 96%
[77] 99.02% 98.26% 97.12% –
[78] 96.67% 93.33% 96% –
[75] 95.86% 97.62% 97.51% –
[82] 94.27% 96.40% 95.66% –
[83] – – 88.52% –
[86] 96.45% 96.41% 96.41% –
[89] – 97.62% 97.27% 99.60%
CNN-PCC-ELM 100% 99% 99.55% 99.97%

Scheme 5 [5] 2 – – 96% –
[7] – – 80.9% –
[8] 96% – 96% 96%
[9] 95.63% – 95.78% 98.21%
[22] – 92.64% 96% –
[12] – – 89.6% –
[24] 93% 98.2% 89.6% –
[23] – 93.92% 98.39% 96.48%
[13] 97% 98% 98% –
[17] 94% 76% 89.47% –
[72] – 98.81% 98.67% 99.10%
[76] 95% 95% 98.06% 95%
[82] 98.45% 98.45% 99.81% –
[10] 98.00% 98.00% 98.00% –
[84] 88.00% 94.00% 98.00% –
[85] 99.18% 98.37% 98.78% –
[87] 98% 99% 99% –
[88] 96% 91.14% 93.24% 96.86%
[90] – 93.62% 93.4% –
CNN-PCC-ELM 99% 99% 98.82% 99.88%

Scheme 6 [30] 2 – 91.94% 90.23% –
[70] – 97.3% 98.7% 99%
[71] 98.3% 100% 97.72% 100%
[40] – – 97.59% 99%
[33] 99.42% 99.40% 99.40% 99%
[34] 98.57% 98.56% 98.60% –
[42] – – 84.7% 92.60%
[74] 95.67% 95.10% 95.10% –
[75] 99.18% 99.16% 99.16% –
[80] – 98.41% 97.23% –
CNN-PCC-ELM 100% 100% 99.51% 100%
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(Scheme 1) and the proposed model distinguished the lung

diseases accurately from the extracted features while attain-

ing an optimistic classification performance (96.22%) in the

case of multi-class classifications. From the above discussion,

it can be summarized that the proposed framework may

assist the radiologists in detecting multiple lung-related dis-

eases from the CXR images accurately and confidently freeing

up valuable time of medical doctors to engage with other high

priority tasks.

In future, more lung-related diseases will be collected and

used to further develop the proposed lightweight model,

which can be applied to an embedded system that automati-

cally detects different lung-related diseases from the CXR

images. This can aid the medical practitioners in quickly

detecting the diseases and providing appropriate treatment

to the patients into real-world clinical care.

5. Conclusion

This study used an extensive dataset composed of 23,690 CXR

images from seven types of lung diseases, including 4,192 CXR

images of COVID-19 patients, to detect these diseases using

ML and DL models. A lightweight CNN model with only three

layers and fewer parameters has been used to extract 512 fea-

tures, and PCC has efficiently reduced unnecessary redundant

features. Finally, a simple ELM with a single hidden layer has

been used to classify the life-threatening diseases. The pro-

posed CNN-PCC-ELM has successfully detected the multi-

class and classified the COVID-19 disease from the lung dis-

eases with high classification performance and reduced com-

plexity, parameters, layers, and time. For all the schemes, the

proposed CNN-PCC-ELM outperformed several SOTAmethods

with a high accuracy of 96.22% and anAUC of 99.483% for eight

class classification. At the same time, the proposed model

achieved an optimistic AUC of 99.45%, 99.33%, 99.97%,

99.88%, and 100% for the Schemes 2, 3, 4, 5, and 6 which out-

performed the most recent SOTA models. Again, most studies

utilized transfer learning methods for recognizing COVID-19,

TB, and pneumonia, which required pre-training and also

required particular resolution images (like 224 � 224,

331 � 331). On the contrary, the proposed model did not

require any pre-training, and with small-resolution images

(124 � 124), the model correctly detects different types of

lung-related diseases. Finally, comprehensive experiments

demonstrate that the CNN-PCC-ELM model can accurately

diagnose several well-known lung-related diseases with a

lower computational overhead than the TL models, which

can help radiologists and other doctors save patients’ lives.
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Appendix

Appendices.

Area Under Curve AUC

Area Under the Receiver Operating Characteristics AUROC
Chest X-Ray CXR
Chest X-Ray8 CXR8
CNN-PCC-ELM CPE
Computer Aided Diagnosis CAD
Confusion Matrix CM
Contrast Limited Adaptive Histogram Equalization CLAHE
Convolutional Layers CL
Convolutional Neural Network CNN
Correlation Coefficients CC
Cross-Validation CV
Decompose, Transfer, and Compose DETRAC
Deep Learning DL
Extreme Learning Machine ELM
Fully Connected FC
Machine Learning ML
Montgomery MT
Neural Network NN
Pearson Correlation Coefficient PCC
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