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A B S T R A C T   

Numerous epidemic lung diseases such as COVID-19, tuberculosis (TB), and pneumonia have spread over the 
world, killing millions of people. Medical specialists have experienced challenges in correctly identifying these 
diseases due to their subtle differences in Chest X-ray images (CXR). To assist the medical experts, this study 
proposed a computer-aided lung illness identification method based on the CXR images. For the first time, 17 
different forms of lung disorders were considered and the study was divided into six trials with each containing 
two, two, three, four, fourteen, and seventeen different forms of lung disorders. The proposed framework 
combined robust feature extraction capabilities of a lightweight parallel convolutional neural network (CNN) 
with the classification abilities of the extreme learning machine algorithm named CNN-ELM. An optimistic ac
curacy of 90.92% and an area under the curve (AUC) of 96.93% was achieved when 17 classes were classified 
side by side. It also accurately identified COVID-19 and TB with 99.37% and 99.98% accuracy, respectively, in 
0.996 microseconds for a single image. Additionally, the current results also demonstrated that the framework 
could outperform the existing state-of-the-art (SOTA) models. On top of that, a secondary conclusion drawn from 
this study was that the prospective framework retained its effectiveness over a range of real-world environments, 
including balanced-unbalanced or large-small datasets, large multiclass or simple binary class, and high- or low- 
resolution images. A prototype Android App was also developed to establish the potential of the framework in 
real-life implementation.   

1. Introduction 

With the advancement in medical science and technology, a large 

number of previously incurable diseases now can be completely treat
able (Vandenberg et al., 2021). Despite significant advances, emerging 
new diseases such as COVID-19 continue to present new challenges of 

* Corresponding author. 
E-mail addresses: md.ahsan2@mail.dcu.ie (M. Ahsan), j.haider@mmu.ac.uk (J. Haider), marcin.kowalski@wat.edu.pl (M. Kowalski).   

1 ORCID: https://orcid.org/0000-0003-4126-0389.  
2 ORCID: https://orcid.org/0000-0002-4491-4942.  
3 ORCID: https://orcid.org/0000-0002-6015-8745.  
4 ORCID: https://orcid.org/0000-0001-8330-5421.  
5 ORCID: https://orcid.org/0000-0001-7771-4587.  
6 ORCID: https://orcid.org/0000-0002-3350-848X.  
7 ORCID: https://orcid.org/0000-0001-6986-6847.  
8 ORCID: https://orcid.org/0000-0002-7300-506X.  
9 ORCID: https://orcid.org/0000-0001-7010-8285.  

10 ORCID: https://orcid.org/0000-0002-1361-9828. 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2023.120528 
Received 1 May 2022; Received in revised form 19 May 2023; Accepted 19 May 2023   

mailto:md.ahsan2@mail.dcu.ie
mailto:j.haider@mmu.ac.uk
mailto:marcin.kowalski@wat.edu.pl
https://orcid.org/0000-0003-4126-0389
https://orcid.org/0000-0002-4491-4942
https://orcid.org/0000-0002-6015-8745
https://orcid.org/0000-0001-8330-5421
https://orcid.org/0000-0001-7771-4587
https://orcid.org/0000-0002-3350-848X
https://orcid.org/0000-0001-6986-6847
https://orcid.org/0000-0002-7300-506X
https://orcid.org/0000-0001-7010-8285
https://orcid.org/0000-0002-1361-9828
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.120528
https://doi.org/10.1016/j.eswa.2023.120528
https://doi.org/10.1016/j.eswa.2023.120528
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.120528&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 229 (2023) 120528

2

quick and accurate identification and finding relevant treatment solu
tions. COVID-19 has spread in every corner of the world and affected 
millions of people, and many have lost their lives. It has been estimated 
that at the beginning of March 2022 nearly six million people have died 
and over 450 million have been afflicted by COVID-19 in the past three 
years (World Health Organization, 2022). Flu-like symptoms such as 
fever, dry cough, fatigue, and difficulty in breathing are generally 
experienced by the patients. In the severe cases, the COVID-19 
frequently results in life-threatening pneumonia (Huff & Singh, 2020), 
which is a respiratory infection that incapacitates the lungs. When a 
healthy individual breathes, the lungs’ tiny sacs called alveoli get filled 
with air. However, if a person contracts pneumonia, the alveoli get 
loaded with pus and fluid, obstructing breathing, and limiting oxygen 
absorption (Ruuskanen et al., 2011). Around 7% of the global popula
tion (450 million people) is impacted by pneumonia alone, and around 2 
million people die from pneumonia each year (Ruuskanen et al., 2011). 

The popular reverse transcription-polymerase chain reaction (RT- 
PCR) takes up to forty-eight hours to confirm the presence of corona
virus (Zhu et al., 2020). Since this technique is highly time-consuming 
and owing to the lack of other resources, a COVID-19 infected person 
can continue to spread the virus to their close contacts (Vandenberg 
et al., 2021). However, COVID-19 can be detected using chest X-ray 
analysis, which is comparatively a faster technique to speed up the 
diagnosis. However, the X-ray image has to be analyzed by a radiologist 
manually. Every year in the United States alone, more than 35 million 
CXR images are collected as part of medical treatment (Kamel et al., 
2017). Increasing workload and exhaustion, are already a commonplace 
among the radiologists who must routinely review in excess of 100 CXR 
images each day (Kamel et al., 2017). Furthermore, radiologists’ diag
nosis can differ because of human judgment increasing the prospect of 
incorrect diagnosis. Numerous other lung diseases such as tuberculosis, 
cardiomegaly, opacity, and pleural that can also be detected from the X- 
ray image analysis, make it even more challenging for the radiologists to 
correctly identify the diseases. Therefore, it requires an automated and 
intelligent system such as artificial intelligence (AI) that can quickly and 
accurately identify any lung diseases with high classification accuracy 
and without consuming a lot of time or resource so that the system can 
be applied to real-world disease identification while significantly 
reducing the workload of the radiologists. 

Machine learning (ML) and Deep learning (DL) have been applied 
effectively and efficiently in a wide variety of medical applications. 
However, for image classification, traditional machine learning models 
often rely on hand-crafted features, which necessitate multiple steps for 
extraction. In contrast, DL models have the advantage of automatically 
learning and extracting relevant features from the data, bypassing the 
need for manual feature extraction step. The key advantage of the DL in 
this context is the elimination of the complex feature engineering pro
cess typically associated with traditional machine learning techniques 
(Molina et al., 2021). Due to the recent availability of large-scale data 
sets, various attempts have been made to automatically identify lung- 
related anomalies using CXR images. 

In 2017, Wang et al. developed a larger database of CXR images that 
consisted of eight thoracic diseases with over 100,000 images (Wang 
et al., 2017). Later, this database was expanded by adding images of 
additional six thoracic diseases to create a ChestX-ray14 (CXR14) 
dataset containing fourteen thoracic diseases. In the CXR14 dataset, 
radiologists provided a small number of CXR images with hand-labeled 
bounding boxes (B-Boxes) to reveal the affected area of the disease in the 
CXR images. They used several pre-trained transfer learning (TL) models 
(AlexNet, GoogleNet, VGGNet-16, and ResNet-50) for detecting the 
diseases from the CXR images and achieved the highest average area 
under the curve (AUC) of 74.51% using ResNet-50. Yao et al. handled 
multilabel classification of thoracic diseases from CXR14 images by 
using a DenseNet-121 as an encoder (Yao et al. 2017). Subsequently, a 
decoder was utilized to optimize interdependencies among the target 
labels in predicting 14 pathogenic abnormalities using a long short-term 

memory (LSTM) network. The proposed framework surpassed the re
sults of Wang et al. with an average AUC of 0.798. Likewise, Rajpurkar 
et al. proposed a CNN architecture containing 121 layers named CheX
Net to detect pneumonia from the CXR14 dataset (Rajpurkar et al., 
2017). They employed class activation mappings to display the char
acteristics region associated with the disease from CXR images (CAMs). 
In comparison to the prior research (Wang et al., 2017; Yao et al. 2017), 
the CheXNet produced higher AUC for each condition. Their model’s F1 
metric was 0.435, compared to the average F1-score of 0.387 given by 
four radiologists. On the other hand, Kumar et al. developed a boosted 
cascaded CNN (BCCNN) for multilabel classification from the CXR14 
dataset (Kumar et al., 2018). For calculating the loss for the multilabel 
classification, they used binary relevance and a pairwise error loss 
function. The BCCNN achieved a higher AUC for only the cardiomegaly 
disease with 91.33% than the previous state-of-the-art (SOTA) models 
(Rajpurkar et al., 2017). The CXR14 database consisted of multiple 
diseases and was imbalanced. In 2018, Ge et al. addressed these two 
problems by utilizing a novel error function named multilabel softmax 
loss (Ge et al., 2018). Various TL models (DenseNet-121, ResNet18, and 
VGG) were used for predicting the 14 diseases and achieved the highest 
AUC of 85.37% while using the ensembling model (DenseNet121-VGG) 
that surpassed the previous SOTA models (Kumar et al., 2018; Rajpurkar 
et al., 2017; Wang et al., 2017; Yao et al. 2017). In contrast, Gundel et al. 
developed a location-aware dense network (DNetLoc) based on 
DenseNet-121 to identify abnormalities in the CXR images from two 
well-known datasets: CXR14 and PLCO (Guendel et al., 2018). The au
thors optimally leveraged high-resolution CXR data by comprising 
spatial knowledge from CXR abnormalities. The proposed DNetLoc 
(AUC 80.7%) surpassed the AUC performance of Wang et al. (AUC 
74.51%). In 2019, Baltruscha et al. employed two TL models named 
ResNet-38 and ResNet-101 to detect the thoracic diseases from the 
CXR14 dataset (Baltruschat et al., 2019). The classification was carried 
out by blending non-image data, for instance, patient age, gender, etc., 
with CXR images. ResNet-38 achieved the highest Receiver Operating 
Characteristic (ROC) for discriminating against 14 lung diseases when 
compared to the SOTA models. In order to minimize the negative effects 
of imbalance present in the CXR14 dataset, Wang et al. introduced an 
adaptive sampling strategy that automatically increases the weight of 
the comparatively poorly performed classes (Wang et al., 2020). For 
disease detection, they employed a TL model called DenseNet-121, 
which was trained adaptively and yielded a promising outcome. 
Ouyang et al. localized and diagnosed the abnormalities from the CXR14 
and CheXpert databases while using a new attention-driven weakly su
pervised algorithm (Ouyang et al., 2020). They used gradient-base vi
sual attention in a holistic way and achieved a more favorable mean 
AUC of 81.9% which was higher than the AUCs obtained from the SOTA 
models. Guan and Huang developed a category-wise residual attention 
learning model for multi-label CXR14 images classification (Guan & 
Huang, 2020). They considered two methods: feature embedding and 
attention learning. ResNet-50 and DenseNet-121 models were used for 
embedding the features and achieved a mean AUC of 81.6% that out
performed the SOTA models. 

Oh et al. proposed a patch-based CNN that was trained with a small 
dataset consisting of three diseases: bacterial pneumonia, tuberculosis 
(TB), and viral/COVID-19 (Oh et al., 2020). The authors segmented the 
lung contour using the fully conventional DenseNet103 and then per
formed classification by ResNet-18. To detect COVID-19 and pneu
monia, Khan et al. constructed a CoroNet based on the pre-trained 
Xception model (Khan et al. 2020). For three-class (Normal vs. Bacte
rial Pneumonia vs. COVID-19) and four-class (Normal vs. COVID- 19 vs. 
Bacterial vs. Viral Pneumonia) classifications, the proposed model 
achieved a precision and recall score of 93.2% and 98.2%, respectively. 
Pandit et al. employed VGG19 TL model to detect the COVID-19 (Pandit 
et al., 2021). The authors trained their model with 1,428 CXR images 
and obtained an accuracy of 92.53 % for binary class (COVID19 vs 
Normal) and 96 % for three-class (Normal vs Bacterial Pneumonia vs 
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COVID19) classifications. To detect COVID19, viral pneumonia, and 
bacterial pneumonia from CXR images, Yamac et al. built a convolu
tional sparse support estimator network based on a neural network 
(Yamac et al., 2021). After training their model with a total of 6,200 CXR 
images, an accuracy of 0.8707 for four-class classification and 0.959 for 
binary classification (COVID-19 and normal). Gour and Jain employed 
two TL models, VGG19 and Xception, and utilized a softmax classifier to 
detect COVID-19 from both CXR and CT images (Gour & Jain, 2022). A 
sensitivity of 97.62% for three-class classification (COVID-19 vs. Pneu
monia vs. Normal) was achieved. To detect viral and COVID19 pneu
monia from CXR images, Chowdhury et al. used several pre-trained TL 
models (Chowdhury et al., 2020). For training their models, numerous 
datasets were merged and accuracies of 99.7% and 97.9% were attained 
for two- and three-class (normal vs viral vs COVID-19) classifications 
respectively. Rahman et al. achieved a promising accuracy of 93.3% 
while using pre-trained DenseNet-201 model for a three-class classifi
cation (normal vs bacterial vs viral pneumonia) (Rahman et al., 2020a). 

Akter et al. used a variety of TL models, including VGG19 and 
GoogLeNet to identify COVID-19 (Akter et al., 2021). To balance the 
datasets, they employed data augmentation and trained the TL models 
using a total of 52,000 CXR images. Using MobileNetV2, they achieved a 
high accuracy of 98% for binary classification in 2 hours, 50 minutes, 
and 21 seconds of compilation time. To diagnose COVID-19, Rasheed 
et al. developed two classifiers: logistic regression (LR) and CNN 
(Rasheed et al., 2021). For data augmentation, a generative adversarial 
network was deployed, and principal component analysis (PCA) was 
used to identify the most significant features. A model was developed by 
training 308 CXR images and PCA facilitated to attain an accuracy of 
97.6%. Chandra et al. created a computer-aided (CAD) system to detect 
TB from CXR images (Chandra et al, 2020). The authors employed a 
guided image filter to de-noise the image before performing lung seg
mentation and classification. After extracting features, a support vector 
machine was used to attain accuracies of 95.60% and 99.40% based on 
the Montgomery and Shenzhen (SZ) datasets, respectively. Sahlol et al. 
retrieved 50,000 important features from CXR images using a pre- 
trained MobileNet model. The authors selected relevant features by 
employing an artificial ecosystem-based optimization algorithm. TB was 
detected from SZ and Dataset 2 with accuracies of 90.2% and 94.1%, 
respectively. Rahman et al. used nine TL and two U-net models to 

diagnose TB, whereas they achieved the highest accuracy of 98.6% using 
DenseNet201 (Rahman et al., 2020b). 

Fig. 1 illustrates the classification performance of selected state-of- 
the-art (SOTA) deep learning models in relation to the number of clas
ses and the number of parameters involved when classifying lung dis
eases. It is evident that numerous models are available for multiclass 
lung disease classification; however, a discernible trend emerges as the 
number of classes increases. With the growth in the number of classes, 
the number of parameters escalates, subsequently leading to a decline in 
classification performance. This demonstrates that model complexity is 
directly proportional to the number of classes, rendering simple models 
insufficient for effectively distinguishing between a large number of 
lung diseases. 

Although there exist many models, it has been aimed here to show
case the best five SOTA models where the selected models represent the 
highest performance levels achieved in their respective categories. For 
instance, the best AUC for 14-class classification was achieved by the 
model presented by Wang et al. (2017), while the highest accuracy of 
99.57% for TB classification was obtained by Chowdhury et al. (2020). 
By choosing the top-performing models in each category, it is intended 
to provide a concise overview of the current advancements in this 
research area, illustrating the benchmark performances for various 
classification tasks ranging from 14-class to binary class. 

In recent years, various SOTA models have demonstrated promising 
results in detecting multiple lung diseases, particularly in two-, three-, 
and four-class classifications. However, the accuracy of these models in 
classifying 14 distinct lung-related disorders using the CXR14 dataset 
was notably low. Consequently, researchers have predominantly relied 
on the AUC value for performance comparison. The majority of SOTA 
models that focused on the CXR14 dataset solely compared the AUC, 
neglecting other essential performance metrics such as precision, recall, 
specificity, and accuracy, as their values were deemed inconsequential. 
Remarkably, Rajpurkar et al. achieved an f1-metric of 0.435, the highest 
value in the last decade using the CXR14 dataset (Rajpurkar et al., 
2017). However, earlier SOTA models struggled to deliver satisfactory 
classification performance, especially when taking into account the 
heightened complexity of the models, characterized by a larger number 
of parameters and layers. These observations underscore the limitations 
of existing research in handling the classification of a more extensive 

Fig. 1. Summary of ML model’s classification performance in identifying lung diseases against the number of classes and parameters employed.  
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range of lung diseases, highlighting the need for further advancements 
in deep learning models to address these challenges. The development of 
novel methodologies capable of maintaining high classification perfor
mance, even with increased complexity, remains a crucial research 
objective in the field of lung disease classification. 

Upon reviewing the relevant SOTA studies, the following challenges 
for detecting the lung diseases using the CXR images are identified.  

• Challenge 1: Binary classification between normal and one specific 
lung disease refers to a highly idealized situation. Real-world CXR 
images would contain features associated with a variety of lung 
diseases creating a large multiclass classification problem. Further
more, this raises the level of complexity in classification owing to 
larger number of parameters and layers. 

• Challenge 2: The CXR image datasets are highly imbalanced in na
ture as some diseases are more frequently identified than the others. 
For instance, in the CXR14 dataset, the number of hernia images 
appeared 227 times, whereas infiltration was found in 19,871 im
ages. One of the primary issues is that each class must contribute 
substantially equal to the final categorization.  

• Challenge 3: Many of the lung diseases such as COVID-19 are life 
threatening, therefore detecting each lung-related disease with high 
classification accuracy and faster processing time is of utmost 
importance. 

The main goal of this study was to develop a computer-aided 
framework that could detect multi-class (17 classes: atelectasis, car
diomegaly, effusion, infiltration, mass, nodule, pneumothorax, consoli
dation, edema, emphysema, bacterial pneumonia, viral pneumonia, 
COVID-19, pleural thickening, fibrosis, hernia, tuberculosis) lung- 
related diseases fast and accurately with a relatively small number of 
parameters and layers in any practical environment (larger or small 
number of classes, larger or smaller dataset, balanced or unbalanced 
dataset, higher or lower resolution CXR images), in order to demonstrate 
the proposed framework’s suitability in real-world applications without 
requiring huge computational resources. The classification of 17 types of 
lung diseases has been attempted for the first time in this study with 
simpler processing to achieve a more optimistic result than the SOTA 
models while cutting down on processing time and the number 

parameters, layers, and size. Aside from that, a hybrid parallel CNN-ELM 
model, combining both DL and ML models, was developed. It is chal
lenging to integrate the ELM with parallel CNN to perform Grad-CAM 
visualization. Up until now, according to the authors’ best knowledge, 
limited study has shown Grad-CAM or any other visualization by 
combining the DL and ML models. Therefore, in this study, a hybrid 
framework was designed that combined ELM with parallel CNN to 
calculate the gradient from the last layer of the ELM to the first layer of 
the CNN, which makes the model used for explaining the decision- 
making of the black box CNN-ELM model. The novel hybrid model’s 
interpretability was demonstrated by Grad-CAM visualization to explain 
which part of the model focused more on images during classification 
than the other. Furthermore, a prototype mobile app was developed to 
simulate the real-life application of the proposed framework. 

2. Prospective framework 

Fig. 2 depicts the prospective framework for detecting multi-class 
lung disorders. It was crucial to merge different publicly available 
datasets that contained lung-related disorders in order to create a 
competitive dataset that represented a scenario much closer to the real 
world. In this study, CXR images only related to seventeen most well- 
known lung-related diseases including COVID-19 were combined. CXR 
images are easy to obtain from the patients and comparatively cheaper 
than other imaging methods (CT scan or MRI). No consideration was 
given to other less-known diseases or other sources of images in this 
approach. The CXR images were reshaped and normalized, then input
ted into a lightweight CNN for extracting the most discriminating fea
tures. The preference was given to the lightweight CNN over other TL 
models due to its lower number of layers and parameters. After 
extracting the features, standardization was applied to the features. 
Finally, ELM was proposed as a classifier to detect 17 classes lung dis
eases from 250 extracted features. Apart from these, a heatmap from 
Grad-CAM was used to explore the black-box approach of the proposed 
parallel CNN-ELM model. From the author’s best knowledge, this is the 
first time that a DL model was combined with a ML model to explain the 
proposed hybrid parallel CNN-ELM with Grad-CAM visualization. The 
step required for calculating the gradient from the last layer (output) of 
the ELM to the first layer is shown in Algorithm 1. This is carried out by 

Fig. 2. The prospective CNN-ELM framework for detecting seventeen lung diseases.  
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replacing the final layer of CNN with the layers (input, hidden, and 
output layers) of ELM and integrating the trained weights and biases of 
the ELM hidden layers with the CNN model. 

Algorithm 1. CNN-ELM algorithm for lung disease classification and 
for Grad-CAM visualization  

1: ModelCNN: parameter set-up CNN model 
2: Train the ModelCNN (70 epochs) 
3: FE: feature extraction from last dense layer before classification layer 
4: ModelELM: parameter set-up 
5: Train the ModelELM using extracted features (1 epoch) 
6:  InputWeight (W): generates randomly 
7:  OutputWeight (β): ReLU (X.W)-1.Y, where X and Y be the input and 

output 
8: Merging CNN-ELM 
9:  Drop last 2 dense layers from the ModelCNN 
10:  Add 2 new dense layers in the ModelCNN with same parameter of the 

ModelELM 
11:  Set weight for newly added 2 layers using layers weight (W, β) of the 

ModelELM 
12: Classification using CNN-ELM   

2.1. Coupling of data sets 

The maximum number of images related to 13 lung diseases (Atel
ectasis, Cardiomegaly, Effusion, Infiltrate, Mass, Nodule, Pneumo
thorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural 
Thickening, and Hernia) were collected from the ChestX-Ray14 dataset 
(Mooney, 2017). The CXR images of pneumonia from the ChestX-Ray14 
were not considered since the difference between viral and bacterial 
pneumonia was not distinctive enough. Therefore, the CXR images of 
viral and bacterial pneumonia were collected from the Kaggle pneu
monia dataset (JtiptJ, 2021). Since COVID-19 is also influenced by a 
virus, the viral pneumonia was also taken into account. Hence, the 
proposed framework was designed to test its performance in dis
tinguishing COVID-19 from the viral pneumonia CXR images. It should 
be noted that large number of COVID-19 CXR images were not available 
in a single publicly open dataset, hence numerous datasets were inte
grated to construct a bespoke database with 4,192 COVID-19 CXR im
ages (BIMCV, 2021; Chowdhury et al., 2020; Cohen, 2021; Haghanifar, 
2019; JtiptJ, 2021; ml-workgroup, 2019). Finally, 1,037 CXR images of 
tuberculosis (TB) were gathered from three separate datasets to com
plete the construction of a unique dataset that contains a total of 
seventeen lung diseases with 40,490 CXR images (CXR17) (Health, 
2020; Jaeger et al., 2014; Mader, 2021). In this study, only multi-class 
classification was considered, whereas multi-label was not considered 
due to a lack of multi-label CXR images in the public domain. Again, the 
number of patients affected by multiple lung diseases at a time is a very 
rare case. In Table 1, the train and test split of the dataset are revealed. 
About 80% of the dataset was utilized to train the model, with the 
remaining 20% being used for the testing. The samples of each disease 
are depicted in Fig. 3. Since the datasets were compiled from a variety of 
distinct CXR images, their resolutions varied widely. This issue was 
resolved by resizing all the CXR images to a same size of 124 × 124 
pixels for promoting easier processing by the network. A multitude of 
pixel values ranging from 0 to 255 were used to depict an image. Image 
rescaling was used to make the range smaller by dividing each image by 
255 and transforming the range from 0 to 1 making them ready for 
feature extraction using the CNN model. 

2.2. Features extraction 

The main challenging task was to design a CNN model that can 
effectively extract the most prominent features with a relatively small 
number of parameters and layers suitable for easy implementation in 
real-world applications. However, too few parameters and layers might 

not be able to adequately capture the discriminating features, while too 
many parameters and layers might overfit the model requiring a longer 
processing time as well as increased computing resources. Fig. 4 depicts 
architecture of the lightweight parallel CNN model employed to extract 
the features. 

The CNN contained eight convolutional layers (CLs), the first six of 
which were executed in parallel to speed up the processing and they 
were adopted through a trial-and-error method. Szegedy et al. were the 
ones who came up with the idea of parallel CLs first (Szegedy et al., 
2015). Longer processing time would be required if the six CLs were run 
separately. The size of each CL was 32, whereas the kernel size of the 
first, second, third, fourth, fifth, and six was 13 × 13, 11 × 11, 9 × 9, 7 ×
7, 5 × 5, and 3 × 3, respectively. In fact, for selecting the kernel size, this 
study followed the architecture provided by Krizhevsky et al., who used 
large kernel sizes like 11 × 11, for instance and achieved a better clas
sification performance (Krizhevsky et al, 2017; Nahiduzzaman et al., 
2023a). Since different kernels generate different feature maps, there
fore, in this study, different kernels were considered and concatenated to 
capture the relevant features, which would assist in obtaining high 
classification performance. As the size of the features could vary 
depending on the disease type, variable kernel size was also maintained 
for each CL. This arrangement would allow to easily capture the key 
features even if the size of the features varied from small to large. The 
padding size was kept ‘SAME’ in the first six CLs in order to extract any 
crucial details in the border element of the CXR images. The output of 
the simultaneous CLs was then concatenated and fed into a sequential 
CNN. The rest of the CLs were followed by a batch normalization and a 
max-pooling layer with 2 × 2 kernel. The sizes of the two CLs were set to 
16 and 8, each with 3 × 3 kernel and the padding sizes were kept “valid”. 
The ReLU activation function was employed for all the CLs. A total of 
two fully connected (FC) layers were present, with the features being 
extracted from the last FC layer. By ignoring 50% of all nodes at random, 
dropout was utilized to reduce overfitting and speed up the training 
process. One dropout (0.5 probability) was used after the final CL and 
another was employed after the first FC layer. Moreover, the CNN model 
was trained for 70 epochs with a batch size of 64. While taking into 
account the learning rate of 0.0001 with the ADAM optimizer, the model 
loss was dealt with the sparse categorical cross entropy loss function - for 
the purpose of extracting the features. Using a trial-and-error method, 
250 features were selected from the final FC layer. 

The extracted features need to be standardized (standard scaler) 
before feeding into the ELM. As the ELM is a type of ML algorithm, 
standardizing the features will improve its performance (Nahiduzzaman 
et al., 2019). If one of the features has a vast range of values, this feature 
will govern the distance. For this purpose, the range of each feature 
should be normalized in the same scale. All features’ ranges were 

Table 1 
Train and test split of the CXR17 dataset.  

Diseases Name No of Training Images No of Testing Images 

Atelectasis 3,724 843 
Cardiomegaly 874 219 
Effusion 3,164 791 
Infiltration 7,637 1,910 
Mass 1,711 428 
Nodule 2,164 541 
Pneumothorax 1,755 439 
Consolidation 1,048 262 
Edema 502 126 
Emphysema 714 178 
Bacterial Pneumonia 2,222 555 
Viral Pneumonia 1,194 299 
COVID-19 3,354 838 
Pleural Thickening 901 225 
Fibrosis 582 145 
Hernia 88 22 
Tuberculosis 829 207 
Total 32,463 8,028  
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normalized (Szegedy et al., 2015) using Eq. (1). 

y =
x − x

σ (1)  

where y represents the output of standard scaler, x represents the input 
sample, x is the mean of the samples and σ represents the standard de
viation of the samples. 

2.3. Extreme Learning Machine (ELM) 

Using a forward feed network, Huang developed ELM (Huang et al. 

2006), a type of neural network (NN) based on supervised learning. In 
order to classify the extracted features from the lung CXR images, a 
single hidden layer was applied. As there was no backpropagation 
involved in ELM, the training time was a thousand times faster than that 
of a typical NN, and the model possessed superior generalization power 
and classification performance than the traditional NN. When it comes 
to large multi-class classification, the ELM produces higher classification 
performance (Nahiduzzaman et al. 2021). The parameters between the 
input layer and the hidden layer were determined randomly, but the 
parameters between the hidden layer and the output layer were deter
mined by adopting pseudoinverse. Table 2 shows the number of hidden 

Fig. 3. Sample CXR images of (A) Atelectasis, (B) Cardiomegaly (C) Effusion, (D) Infiltration, (E) Mass, (F) Nodule, (G) Pneumothorax, (H) Consolidation, (I) Edema, 
(J) Emphysema, (K) Bacterial pneumonia, (L) Viral pneumonia, (M) COVID-19, (N) Pleural thickening, (O) Fibrosis, (P) Hernia, and (Q) Tuberculosis. 

Fig. 4. A lightweight parallel CNN architecture for extracting features from CXR images.  
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and output nodes used in this study for different trials. Table 3 reveals 
the summary of proposed CNN-ELM model to detect multiple diseases. 

3. Experimental procedure 

Both binary and multiclass classifications with six trials were 
considered in this study to determine the suggested framework’s per
formance. The first trial was carried out using the mixed dataset that 
included 17 different lung illnesses as shown in Table 1. The rest of the 
trials (Table 4) were utilized to validate that the suggested framework’s 
ability to provide optimistic classification performance in terms of 
reduction in the number of model parameters and layers, and processing 
time compared to the SOTA models. The second experiment was carried 
out using the CXR14 dataset. Trial 3 and Trial 4 were conducted to 
detect COVID-19 from normal and pneumonia. Trial 5 and Trial 6 were 
used for identifying COVID-19 or TB from normal. A variety of classi
fication trials were conducted to ensure that the framework under 
consideration could adapt to any situation (e.g., binary or multiclass 
classifications, balanced or imbalanced datasets (Mukherjee et al. 2020), 
small or large datasets, and high or low-resolution images) and address 
the challenges mentioned in the Introduction section. All of the trials 
were assessed using an 80/20 split for training and testing schemes. 

All the experiments were conducted using a Python-based frame
work operated by a system with an Intel Core i9 processor and graphics 
processing unit (GPU). The parameters for the proposed framework are 
mentioned in Table 5. A confusion matrix (CM) was used to assess the 
ELM model’s performance. The accuracy, precision, recall, f1-score, and 
area under the curve (AUC) were evaluated from the CM using the 
following equation (Powers, 2010; Swets, 1988). 

Table 2 
Parameters of ELM for different trials.  

Scheme Total Nodes in 
Input Layer 

Total Nodes in 
Hidden Layer 

Total Nodes in 
Output Layer 

Trial 1–17 class 250 1500 17 
Trial 2–14 class 250 1500 14 
Trial 3–4 class 250 500 4 
Trial 4–3 class 250 500 3 
Trial 5–2 class 250 200 1 
Trial 6–2 class 250 200 1 
Activation 

Function 
ReLU  

Table 3 
Summary of proposed CNN-ELM model to detect multiple lung diseases.  

Layer (Type) Output Shape Parameters 

model (Functional) (None, 124, 124, 192) 43,776 
Conv7 (Conv2D) (None, 122, 122, 16) 27,664 
bn1 (BatchNormalization) (None, 122, 122, 16) 64 
Av7 (Activation) (None, 122, 122, 16) 0 
mp1 (MaxPooling2D) (None, 61, 61, 16) 0 
Conv8 (Conv2D) (None, 59, 59, 8) 1,160 
bn2 (BatchNormalization) (None, 59, 59, 8) 32 
av2 (Activation) (None, 59, 59, 8) 0 
mp2 (MaxPooling2D) (None, 29, 29, 8) 0 
dp1 (Dropout) (None, 29, 29, 8) 0 
ft (Flatten) (None, 6,728) 0 
dense (Dense) (None, 1,024) 6,890,496 
bn4 (BatchNormalization) (None, 1,024) 4,096 
dp2 (Dropout) (None, 1,024) 0 
Feature Extraction (Dense) (None, 250) 256,250 
Hidden Layer (Dense) (None, 1,500) 376,500 
av3 (Activation) (None, 1,500) 0 
Output (Dense) (None, 17) 25,500 
Total Parameters 7,625,538 
Trainable Parameters 7,623,442 
Non-trainable Parameters 2,096  

Table 4 
Description of Trial 2 to Trial 6 for detecting multiple lung diseases.  

Trial 
Number 

Number of 
Classes 

Disease Names Training 
Images 

Testing 
Images 

Trial 2 14 Atelectasis 3,372 843 
Cardiomegaly 874 219 
Effusion 3,164 791 
Infiltration 7,637 1,910 
Mass 1,711 428 
Nodule 2,164 541 
Pneumonia 258 64 
Pneumothorax 1,755 439 
Consolidation 1,048 262 
Edema 502 126 
Emphysema 714 178 
Fibrosis 582 145 
Pleural Thickening 901 225 
Hernia 88 22 
Total 24,770 6,139  

Trial 3 4 Normal 8,153 2,039 
COVID-19 3,354 838 
Bacterial 
Pneumonia 

2,222 555 

Viral Pneumonia 1,194 299 
Total 14,923 3,731  

Trial 4 3 Normal 8,153 2,039 
Pneumonia 1,194 299 
COVID-19 3,354 838 
Total 12,701 3,176  

Trial 5 2 Normal 8,153 2,039 
COVID-19 3,354 838 
Total 11,507 2,877  

Trial 6 2 Normal 8,153 2,039 
Tuberculosis 829 207 
Total 8,982 2,246  

Table 5 
The parameters for the proposed framework.  

Name Parameters 

Programming Language Python 
Environment PyCharm Community Edition (2021.2.3) 
Backend Keras with TensorFlow 
Processor 11th generation Intel(R) Core (TM) i9-11900 CPU 

@2.50 GHz 
Installed RAM 32 GB 
GPU NVIDIA GeForce, RTX 3090 24 GB 
Operating system Windows 10 Pro 
Input Chest X-Ray Images 
Input Size 124 × 124 
App Development Platform Android Studio 2021.1.1 (Bumblebee) 
Tensorflow Lite tensorflow-lite-support:0.3.0 
Metadata Extractor tensorflow-lite-metadata:0.3.0 
Tensorflow Lite GPU 

Acceleration 
tensorflow-lite-gpu:0.3.0  
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Accuracy =
TP + TN

TP + TN + FP + FN
(2)  

Precision =
TP

TP + FP
(3)  

Recall =
TP

TP + FN
(4)  

F1 − Score =
2 × (Precision × Recall)

Precision + Recall
(5)  

AUC =
1
2
(

TP

TP + FN
+

TN

TN + FP
) (6)  

where TP, TN, FP and FN, denote true positives, true negatives, false 
positives, and false negatives, respectively. 

4. Results and discussions 

4.1. Trial 1: Multiclass-17 lung diseases 

In this trial, a total of 32,463 CXR images were used to train the ELM, 
with 3,724, 874, 3,164, 7,637, 1,711, 2,164, 1,755, 1,048, 502, 714, 
2,222, 1,194, 3,354, 901, 582, 88 and 829 images for atelectasis, car
diomegaly, effusion, infiltrate, mass, nodule, pneumothorax, consoli
dation, edema, emphysema, bacterial pneumonia, viral pneumonia, 
COVID-19, pleural thickening, fibrosis, hernia, and tuberculosis, 
respectively. The classification performance of the CNN-ELM models 
was tested using 8,028 CXR images (atelectasis: 843, cardiomegaly: 219, 
effusion: 791, infiltrate: 1,910, mass: 428, nodule: 541, pneumothorax: 
439, consolidation: 262, edema: 126, emphysema: 178, bacterial 

pneumonia: 555, viral pneumonia: 299, COVID-19: 838, pleural thick
ening: 225, fibrosis: 145, hernia: 22, and tuberculosis: 207). The CM of 
17 diseases is illustrated in Fig. 5. 

The CNN-ELM model’s average precision, recall, F1-score, and ac
curacy were 0.94, 0.89, 0.91, and 90.92% respectively. Table 6 reflects 
the effectiveness of the model to detect 17 diseases in terms of class-wise 
classification. 

Fig. 6 illustrates a class-wise ROC to show how well the CNN-ELM 
model distinguishes 17 classes of lung diseases. The models’ robust
ness was reflected in the fact that the ROC values for all classes appeared 
higher than 94%. While the average ROC of the proposed framework 

Fig. 5. Confusion matrix (CM) of CNN-ELM to detect 17 diseases.  

Table 6 
Class-wise classification performance of CNN-ELM to detect 17 diseases.  

Diseases Name Precision Recall F1-Score Accuracy (%) 

Atelectasis (0)  0.90  0.89  0.89  – 
Cardiomegaly (1)  0.95  0.87  0.90  – 
Effusion (2)  0.88  0.90  0.89  – 
Infiltrate (3)  0.86  0.94  0.90  – 
Mass (4)  0.92  0.85  0.88  – 
Nodule (5)  0.85  0.84  0.84  – 
Pneumothorax (6)  0.91  0.87  0.89  – 
Consolidation (7)  0.95  0.87  0.89  – 
Edema (8)  0.98  0.86  0.92  – 
Emphysema (9)  0.94  0.80  0.87  – 
Bacterial Pneumonia (10)  0.97  0.98  0.97  – 
Viral Pneumonia (11)  0.96  0.94  0.95  – 
COVID-19 (12)  0.99  1.00  0.99  – 
Pleural Thickening (13)  0.94  0.83  0.88  – 
Fibrosis (14)  0.94  0.79  0.86  – 
Hernia (15)  1.00  0.86  0.93  – 
Tuberculosis (16)  0.99  0.98  0.99  – 
Average  0.94  0.89  0.91  90.92  
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was 96.93%, the ROC value of COVID-19 was 99.82%, which indicated 
the model’s ability to achieve high classification accuracy. The CNN- 
ELM model took 0.1904 seconds (s) for testing 8,028 CXR images in 
contrast to only 0.9 miliseconds (ms) for testing a single CXR image. 

It should be noted that the model has been developed with an 
imbalanced dataset mainly due to the unavailability of data for each 
category in the public domain. Indeed, one of our primary objectives in 
designing the model was to effectively handle the data imbalance 
problem. Although the number of images in the classes considered in 
this work was unbalanced, each class contributed equally to the final 
score. For example, the F1-score for all classes ranged between 0.89 and 
0.99 indicating that even with unbalanced datasets a range of F1-score 
was obtained. For COVID-19, a recall of 100% was achieved, demon
strating the suggested framework’s optimistic performance in dis
tinguishing COVID-19 from all other lung diseases with superior 
classification performance. Recently, there has been an urgent require
ment for the radiologists to reliably detect COVID-19. Therefore, the 
suggested model would reduce radiologist’s liability and increase con
fidence. Further success even with the imbalanced data can be demon
strated by the results presented in Fig. 6. For instance, the infiltration 
class, with 7,637 images, achieved an AUC of 97.98%. Similarly, the TB 
class, consisting of 829 images, obtained an AUC of 99.9%, and the 
hernia class, with 88 images, reached an AUC of 94.42%. These results 
indicated that despite the presence of data imbalance across different 
classes, the model ensured that all classes contribute almost equally to 
the final classification outcomes. This approach effectively addresses the 
performance disparities that may arise due to the variations in the 
number of samples available for different lung disease classes, demon
strating the model’s potential for real-world applications. 

Due to the fact that the CXR17 is a combined dataset containing 17 
diseases, the outcome could not be compared to any SOTA models in an 
effort to clarify whether the model perform well or not. Though the 
results of the large class classification (17 diseases) were highly prom
ising, additional trials were conducted to demonstrate the proposed 

framework’s consistency and robustness. 

4.2. Trial 2: Multiclass-14 lung diseases 

This trial with ChestX-Ray14 dataset was conducted to compare 
CNN-ELM model’s performance with other SOTA models. A total of 
24,770 CXR images (atelectasis: 3,372, cardiomegaly: 874, effusion: 
3,164, infiltrate: 7,637, mass: 1,711, nodule: 2,164, pneumonia: 258, 
pneumothorax: 1,755, consolidation: 1,048, edema: 502, emphysema: 
714, fibrosis: 582, pleural thickening: 901, and hernia: 88) were used to 
train the CNN-ELM model. The remaining of 6,193 CXR images (atel
ectasis: 843, cardiomegaly: 219, effusion: 791, infiltrate: 1,910, mass: 
428, nodule: 541, pneumonia: 64, pneumothorax: 439, consolidation: 
262, edema: 126, emphysema: 178, fibrosis: 145, pleural thickening: 
225, and hernia: 22) were employed to test the model’s performance. 
The precision, recall, F1-socre and accuracy were calculated from the 
CM illustrated in Fig. 7. 

Table 7 presents the class-wise CNN-ELM’s precision, recall, and F1- 
score for detecting 14 lung diseases. Even though the dataset was 
imbalanced, the outcome was relatively stable, indicating that each class 
has a significant impact on the final classification performance. The 
proposed framework attained an average accuracy of 89.10% and a 
receiver operating characteristic (ROC) value of 95.62%. 

As illustrated in Fig. 8, the class-wise ROC curves for each class 
affirmed the model’s efficiency in discriminating different diseases. 

4.3. Trial 3: Multiclass- COVID-19, bacterial and viral pneumonia 

Since the proposed methodology produced favorable outcomes in the 
cases of 17- and 14-class classifications, the framework’s ability to 
handle small class classifications were also tested with 4-, 3- and 2-class 
classifications. The CNN-ELM model was trained using 14,923 CXR 
images (normal: 8,153, COVID-19: 3,354, bacterial pneumonia: 2,222, 
and viral pneumonia: 1,194) in Trial 3. 3,731 images (normal: 2,039, 

Fig. 6. The ROC of CNN-ELM to detect 17 diseases.  
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COVID-19: 838, bacterial pneumonia: 555, and viral pneumonia: 299) 
were utilized to assess the model’s categorization performance. Fig. 9 
shows that the proposed approach was able to discriminate COVID-19 
from the other lung disorders with an optimistic ROC of 99.68%. 

Table 8 shows how well the CNN-ELM model can classify different 
types of diseases in a 4-class including COVID-19. The average precision, 
recall, F1-score, and accuracy obtained were 0.92, 0.91, 0.91, and 
95.33%, respectively. Since viral and bacterial pneumonias are difficult 
to differentiate, hence the model discriminant ability was not so high as 
shown in CM of Fig. 9. 

4.4. Trial 4: Multiclass-COVID-19 and pneumonia 

The primary objective of this trial is to investigate how well the 
model distinguishes COVID-19 from viral pneumonia, as both of these 
disorders are caused by viruses. Therefore, the CNN-ELM model was 
trained using 12,701 CXR images (normal: 8,153, pneumonia: 2,222, 
and COVID-19: 3,354). A total of 3,176 images (normal: 2,039, pneu
monia: 299, and COVID-19: 838) were utilized to calculate the model’s 
precision, recall, F1-score, and accuracy from the confusion matrix 
illustrated in Fig. 10(A). From Table 9, it was observed that the results 

Fig. 7. The confusion matrix of CNN-ELM to detect 14 diseases in Trial 2.  

Table 7 
Class-wise classification performance of CNN-ELM to detect 14 diseases.  

Diseases Name Precision Recall F1-Score Accuracy (%) 

Atelectasis (0)  0.86  0.89  0.88  – 
Cardiomegaly (1)  0.96  0.88  0.92  – 
Effusion (2)  0.88  0.92  0.90  – 
Infiltrate (3)  0.86  0.94  0.90  – 
Mass (4)  0.90  0.83  0.86  – 
Nodule (5)  0.90  0.83  0.87  – 
Pneumonia (6)  1.00  0.78  0.88  
Pneumothorax (7)  0.93  0.86  0.90  – 
Consolidation (8)  0.97  0.85  0.91  – 
Edema (9)  0.97  0.81  0.88  – 
Emphysema (10)  0.94  0.81  0.87  – 
Fibrosis (11)  0.96  0.84  0.90  – 
Pleural Thickening (12)  0.93  0.85  0.89  – 
Hernia (13)  0.95  0.82  0.88  – 
Average  0.93  0.85  0.91  89.10  

Fig. 8. The ROC of CNN-ELM to detect 14 diseases in Trial 2.  
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associated with each class’s precision, recall, and F1-score were higher 
than 99% with an accuracy of 99.30%. The optimistic discriminant 
capability of the proposed framework was verified by the receiver 
operating characteristic (ROC) value of 99.88%. The class-wise ROC 
value (99.92%) demonstrated in Fig. 10(B) also revealed the model’s 
discriminant capability to detect COVID-19. 

4.5. Trial 5: Binary-Normal and COVID-19 

A significant percentage of research in the field of medical image 
analysis over the last few decades has focused on two-class classification 
rather than multi-class classification (Akter et al., 2021; Chandra et al., 
2020; Chowdhury et al., 2020; Khan, et al., 2020; Rahman et al., 2020b; 
Yamac et al., 2021). As a result, the model’s performance was also 

evaluated in two-class environment. A total of 11,507 CXR images 
(normal: 8,153 and COVID-19: 3,354) were used for training, and 2,877 
images (normal: 2,039 and COVID-19: 838) were used to evaluate the 
CNN-ELM’s performance in detecting COVID-19. Fig. 11(A) illustrates 
the confusion matrix (CM) that was used to determine the precision, 
recall, and F1-score. The accuracy of the proposed framework was 
99.37% and the average precision, recall, and F1-score were all over 
99%, as shown in Table 10. The class-wise ROC of two classes was 
99.91% in this trial as illustrated in Fig. 11(B), validating the frame
work’s highest discriminant competence. 

4.6. Trial 6: Binary-Normal and TB 

In this trial, the CNN-ELM model was trained with a total of 8,982 

Fig. 9. (A) CM and (B) ROC of CNN-ELM to detect 4 classes in Trial 3.  

Table 8 
Class-wise classification performance of CNN-ELM to detect 4 classes in Trial 3.  

Disease Name Precision Recall F1-Score Accuracy (%) 

Normal (0)  0.98  0.98  0.98  – 
COVID-19 (1)  0.96  0.96  0.96  – 
Bacterial Pneumonia (2)  0.90  0.92  0.91  – 
Viral Pneumonia (3)  0.84  0.78  0.81  – 
Average  0.92  0.91  0.91  95.33  

Fig. 10. (A) CM and (B) ROC of CNN-ELM to detect 3 classes in Trial 4.  

Table 9 
Class-wise classification performance of CNN-ELM to detect 3 classes in Trial 4.  

Disease Name Precision Recall F1-Score Accuracy (%) 

Normal (0)  1.00  1.00  1.00  – 
Pneumonia (1)  0.99  0.99  0.99  – 
COVID-19 (2)  0.99  0.99  0.99  – 
Average  0.99  0.99  0.99  99.30  
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CXR images (normal: 8,153 and tuberculosis: 829) and evaluated its 
performance on 2,246 images (normal: 2,039 and tuberculosis: 207). 
The confusion matrix (CM) used to calculate the precision, recall, and 
F1-score is depicted in Fig. 12(A). As shown in Table 11, the proposed 
framework was 99.82% accurate, with an average precision, recall, and 
F1-score of 100%, 99%, and 99%, respectively. The CM demonstrated 
that the CNN-ELM model correctly identified all normal patients. The 
class-wise ROC for two classes was 99.98%, as shown in Fig. 12 (B), 
proving the framework’s strongest classifier skill. 

4.7. Performance comparison with SOTA models 

The proposed CNN-ELM model was compared to the SOTA models 
based on classification performance as well as model parameters, layers, 
and processing time. As Trial 1 used a completely new merged dataset, it 
could not be compared. The previously used SOTA models simply cited 
the AUC values, as no acceptable level of precision, recall, F1-score, or 
accuracy could not be achieved. Table 12 compares class wise AUC 
values of the earlier works with the present model developed in Trial 2. 
Only Rajpurkar et al. demonstrated an F1-score of 0.435, but the pro
posed CNN-ELM demonstrated an encouraging F1-score of 0.89, over 
46% higher than the prior study. On top of that, Rajpurkar et al. 

Fig. 11. (A) CM and (B) ROC of CNN-ELM to detect COVID-19.  

Table 10 
Class-wise classification performance of CNN-ELM to detect COVID-19.  

Disease Name Precision Recall F1-Score Accuracy (%) 

Normal (0)  1.00  1.00  1.00  – 
COVID-19 (1)  0.99  0.99  0.99  – 
Average  0.99  0.99  0.99  99.37  

Fig. 12. (A) CM and (B) ROC of CNN-ELM to detect Tuberculosis (TB).  

Table 11 
Class-wise classification performance of CNN-ELM to detect TB.  

Disease Name Precision Recall F1-Score Accuracy (%) 

Normal (0)  1.00  1.00  1.00  – 
TB (1)  1.00  0.98  0.99  – 
Average  1.00  0.99  0.99  99.82  
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achieved the highest AUC values for almost each class compared to the 
prior SOTA models. However, the proposed CNN-ELM surpassed Raj
purkar et al.’s AUC values except for the AUC value for “Hernia” (only 
0.0009 higher). The suggested CNN-ELM model achieved an AUC of 
95.26%, which was 11% higher than best mean AUC of the SOTA models 
(84.14%) validating the proposed framework’s resilience. Fig. 13 also 
clearly indicates the similar observations in a pictorial view. 

Table 13 presents comparative performance between the CNN-ELM 
model and the SOTA models for Trial 2 to Trail 6. For the detection of 
four diseases, Khan et al. attained the highest precision, recall, and ac
curacy of 89.84%, 89.94%, and 89.6% (Khan et al., 2020). In Trial 3, the 
proposed CNN-ELM model outperformed the SOTA models with an 
optimistic accuracy of 95.33%, which is 6% higher than the previous 
SOTA models. Again, Khan et al.’s CoroNet used 71 layers and 33.97 
million (M) parameters, whereas CNN-ELM employed only 7 layers with 
7.6 M parameters. This meant that CNN_ELM layers were 10 times and 
the parameters were 6 times lower than the CoroNet model. Jain et al. 
achieved a maximum accuracy of 97.97% in the SOTA models in Trial 4 
by employing the InceptionV3 model, which consisted of 48 layers and 
23.9 M parameters. The proposed framework obtained a promising ac
curacy of 99.30% (2.6% higher) using a relatively modest model with 

almost 7 times less layers and over 3 times less parameters than those in 
the InceptionV3 model. 

Due to the lower number of parameters, the CNN-ELM analyzed a 
single image in <1 ms, whereas other models in the literature (Joshi 
et al., 2021; Ozturk et al., 2020) reported values between 15.9 ms and 
100 ms. Trial 5 has been a major focus for the researchers during the past 
two years. The suggested model performed well in classifying COVID-19 
patients from normal patients using the CXR images, with an accuracy 
and recall of 99.37% and 99%, respectively. Sekeroglu et al. acquired 
the maximum AUC of 96.48%, whereas the proposed CNN-ELM 
accomplished an optimistic AUC of 99.91%, demonstrating its poten
tial in diagnosing COVID-19 with high accuracy. CNN-ELM has a pro
cessing time of <1 ms, which was faster than that by Ozturk et al. (Joshi 
et al., 2021) (100 ms) and Brunese et al. (Asnaou & Chawki, 2021) (249 
ms) enabling real-time diagnosis. The CNN-ELM model surpassed eight 
previous SOTA models in Trial 5. In addtion, TB is one of the most severe 
respiratory disorders, and it was effectively identified in this study as 
well. The proposed model in Trial 6 recognized TB with 100% precision, 
99.82% accuracy and 99.98% AUC, which were greater than six well- 
known approaches. However, Chandra et al. (2020) achieved slightly 
better Recall (99.40%) compared to the CNN-ELM model (99.00%). 

Table 12 
Class-wise comparison Area under the curves of ROC for diseases classification in the CXR14 dataset (Trial 2).  

Diseases Area Under Curve (AUC) 

Wang et al., 2017 Yao et al., 2017 Guendel et al., 2018 Kumar et al., 2018 Wang et al., 2020 Rajpurkar et al., 2017 CNN-ELM 

Atelectasis  0.7158  0.772  0.826  0.7618  0.814  0.8094  0.9711 
Cardiomegaly  0.8065  0.904  0.911  0.9133  0.899  0.9248  0.9789 
Effusion  0.7843  0.859  0.885  0.8635  0.873  0.8638  0.9742 
Infiltrate  0.6089  0.695  0.716  0.6923  0.701  0.7345  0.9722 
Mass  0.7057  0.792  0.854  0.7502  0.840  0.8676  0.9425 
Nodule  0.6706  0.717  0.774  0.6662  0.775  0.7802  0.9510 
Pneumonia  0.6326  0.713  0.765  0.7145  0.662  0.7680  0.9123 
Pneumothorax  0.8055  0.841  0.872  0.8594  0.865  0.8887  0.9686 
Consolidation  0.7078  0.788  0.806  0.7838  0.789  0.7901  0.9387 
Edema  0.8345  0.882  0.892  0.8880  0.874  0.8878  0.9685 
Emphysema  0.8149  0.829  0.925  0.8982  0.924  0.9371  0.9689 
Fibrosis  0.7688  0.767  0.820  0.7559  0.809  0.8047  0.9363 
Pleural Thickening  0.7082  0.765  0.785  0.7739  0.772  0.8062  0.9373 
Hernia  0.7667  0.914  0.941  0.8024  0.923  0.9164  0.9155 
Mean  0.7451  0.761  0.807  0.7945  0.82  0.8414  0.9526 

Bold values indicate the best values. 

Fig. 13. Class wise AUC values of CNN-ELM model compared to the SOTA models.  
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Table 14 demonstrates that the CNN-ELM model was less complex 
than the SOTA models for detecting 14 lung diseases. The majority of the 
SOTA models (Guendel et al., 2018; Rajpurkar et al., 2017; Yao et al. 
2017) employed DenseNet-121, which had 121 layers and 8.1 M pa
rameters, whereas the suggested model employed only 7 layers (CNN 
has three CLs and two FC layers whereas ELM has one hidden and one 
output layer) and had a total of 7.6 M parameters. The SOTA models that 
used AlexNet had layer number (8) closes to the model developed in this 
study but still the number of parameters were much higher. 

In addition, the earlier SOTA models required high-resolution im
ages, for instance 480 × 480 (Wang et al., 2020), 416 × 416 (Panwar 
et al., 2020), 299 × 299 (Asnaou & Chawki, 2021), 227 × 227 (Lopes & 

Valiati, 2017), 224 × 224 (Wang et al., 2017), and 256 × 256 (Yao et al., 
2017). The proposed model, on the other hand, was able to correctly 
recognize lung disorders with low-resolution input images (124 × 124). 
The CNN-ELM was designed to maintain consistency in any setting, 
including large- (17 classes) or small-class (two classes) classifications, 
large (40,139) or small (11,228) datasets, balanced or unbalanced 
datasets, and low or high resolution CXR images. Therefore, the pro
posed framework classified accurately 17 different lung diseases with 
fewer model parameters and layers, low-resolution CXR images, and a 
shorter processing time. The framework also showed promises to 
implement in real-world environment with real-time diagnosis 
outcomes. 

4.8. Model’s interpretability capability 

In recent years, to break the black box nature of the DL models, 
several researchers employed different tools for example gradient 
weighted class activation mapping (Grad-CAM), Shapley additive ex
planations (SHAP), and local interpretable model-agnostic explanations 
(LIME). During classification of different diseases, the tools highlight 
parts of the images that were identified by the DL models (Arik et al., 
2020; Ghoshal & Tucker, 2020; Nahiduzzaman et al., 2023b; Yan et al., 
2020). In order to classify various lung-related defects, Grad-CAM was 
used in this work to determine where exactly in an image the proposed 
model paid significantly more attention in contrast to the other parts. 

According to the author’s best knowledge, no study had shown Grad- 
CAM heatmaps for lung disease classification by combining DL models 
with the ML models. Fig. 14 shows a comparison of Parallel CNN and 
Parallel CNN-ELM for Grad-CAM visualization of selected four diseases 
without any particular preference. In the first row, the CXR image of the 
COVID-19 patient was marked by an expert radiologist. In general, it 
was clear that heatmaps generated on the images classified by CNN-ELM 
was much stronger than that generated by the CNN. For example, in the 
fibrosis CXR image, the parallel CNN produced the heatmap high
lighting the areas marked by the doctor. However, the heatmap for the 
hybrid parallel CNN-ELM model was even more pronounced with 

Table 13 
Classification performance comparison with SOTA models for the Trial 3 to Trial 6.  

Scheme No Reference No. of Class Processing Times (seconds) Precision Recall Accuracy AUC 

Trial 3 Khan et al., 2020 4 – 89.84% 89.94% 89.6% – 
Yamac et al., 2021 – – 79.79% 87.07% – 
Chandra et al., 2020 – 80.92% 85.66% 76.46%  
CNN-ELM 0.000997 92% 91% 95.33% 99.17% 

Trial 4 Chandra et al., 2021 3 – – – 93.41% – 
Pandit et al., 2021 – – 86.7% 92.53%  
Sekeroglu and Ozsahin, 2020 – 92.70% 92.70% 95.99% – 
Wang et al., 2020 – 93.33% 93.33% 93.3% – 
Jain et al., 2021 – 96.33% 93% 97.97% – 
Asnaou & Chawki, 2021 0.159 92.38% 92.11% 92.18%  
Ozturk et al., 2020 <1 89.96% 85.35% 87.02%  
Chandra et al., 2020 – 94.27% 96.40% 95.66% – 
CNN-ELM 0.000996 99% 99% 99.30% 99.88% 

Trial 5 Pandit et al.,2021 2 – – 92.64% 96% – 
Panwar et al., 2020 – – – 88.10% 88.10% 
Akter et al., 2021 – – – 89.6% – 
Khan et al., 2020 – 93% 98.2% 89.6% – 
Sekeroglu and Ozsahin, 2020 – – 93.92% 98.39% 96.48% 
Chowdhury et al., 2020 – 97% 98% 98% – 
Ozturk et al., 2020 <1 98.03% 95.13% 98.08%  
Brunese et al., 2020 2.498 – 94% 98% – 
CNN-ELM 0.000996 99% 99% 99.37% 99.91% 

Trial 6 Chandra et al., 2020 2 – 99.42% 99.40% 99.40% 99% 
Rahman et al., 2020a,b – 98.57% 98.56% 98.60% – 
Sahlol et al., 2020 – – 91.94% 90.23% – 
Ayaz et al., 2021 – – – 97.59% 99% 
Lopes and Valiati, 2017 – – – 84.7% 92.60% 
Duong et al., 2021 – – 97.3% 98.7% 99% 
CNN-ELM 0.000996 100% 99% 99.82% 99.98% 

Bold values indicate the best values. 

Table 14 
CNN-ELM simplicity comparison with SOTA models.  

Model Name (Ref.) Number of 
Layers 

Number of 
Parameters 
(million) 

VGG16 (Brunese et al.,2020; Lopes and 
Valiati, 2017; Pandit et al., 2021; Wang 
et al., 2017) 

16  138.3 

DenseNet-121 (Guendel et al., 2018; 
Rajpurkar et al.,2017; Wang et al., 2020; 
Yao et al. 2017) 

121  8.1 

CoroNet (Khan et al., 2020) 71  33.97 
DarkNet (Panwar et al., 2020) 106  40.5 
Inception Resnet V2 (Asnaou & Chawki, 

2021) 
164  55.8 

DenseNet 201 (Chowdhury et al., 2020; 
Rahman et al., 2020b) 

201  20.2 

ResNet 50 (Lopes and Valiati, 2017; Wang 
et al., 2017) 

50  25.6 

Inception-V3 (Jain et al., 2021) 48  23.8 
Xception (Jain et al., 2021) 71  22.9 
AlexNet (Duong et al., 2021; Wang et al., 

2017) 
8  62.37 

Proposed Framework 7  7.6 

Bold value indicate the best value. 
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intense color aligned with the areas marked by the doctor. Similar trend 
was also found in the heatmaps for other diseases. The main challenging 
task was merging the ELM hidden layers’ weight with the CNN model, 
which was done by dropping the last layer of CNN and updating by 
adding three layers (input, hidden, and output layers) of ELM with 
corresponding weights and biases. Consequently, both Parallel CNN and 
ELM were engaged in classifying a particular lung related disease with 
high classification performance. Therefore, the proposed hybrid light
weight parallel CNN-ELM model demonstrated a higher capability of 

interpretability than the parallel CNN model only. 

4.9. Key technical contributions and limitations 

Although the CNN-ELM architecture and the application of Grad- 
CAM in deep learning and machine learning models have been previ
ously explored, this work addresses specific challenges and offers unique 
contributions that differentiate it from the existing research. The key 
challenges were aimed to overcome in this study include classifying a 

Fig. 14. (A) CXR images marked by an expert radiologist, (B) Grad-CAM heatmap with Parallel CNN, and (C) Grad-CAM heatmap with hybrid Parallel CNN-ELM.  
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large number of lung diseases (17 classes) with improved performance 
compared to the previous works. The best research prior to this work 
achieved an AUC of 73.8% for 14 lung diseases classification using a 
model with 138.3 M parameters. Designing a lightweight model with a 
reduced number of layers and parameters to facilitate implementation 
on the embedded systems can support medical practitioners in detecting 
life-threatening lung diseases. This study addresses these challenges by 
developing a lightweight model with only 7 layers and 7.6 M parameters 
while running 6 convolution layers in parallel, reduced any overfitting 
problem and enhanced classification performance across all schemes. It 
was demonstrated that the proposed model did not require pretraining, 
allowing for faster classification of lung diseases (<1 ms on a GPU 
computer and 21 ms on an Android phone). A novel Grad-CAM com
parison between parallel CNN and parallel CNN-ELM models was made 
to again demonstrate a better outcome through combining ML and DL. 
GRAD-CAM was successfully applied to identify 17 lung disease classes 
in comparison to limited number of classes available in the literature. 
Furthermore, GRAD-CAM results were verified by the expert radiologists 
which can rarely be found in the existing literature. By addressing these 
challenges and offering novel contributions, this study advances the 
current understanding of efficient large multiclass lung disease classi
fication using a combined ML and DL approach. 

In this study, classifications were conducted with images only con
taining single label. However, it was not totally unusual that an image 
could have multiple labels. Only few images in the original databases 
contained diseases with multiple labels. To train these multi-label CXR 
images (10 images in classes), the parameters and structure of the DL 
and ML models must be altered, which could impair the results of the 
multi-class classification (Kumar et al., 2018). Again, multi-label dis
orders would confound the model’s ability to detect diseases accurately 
which means reduced the classification performance (Baltruschat et al., 
2019; Ge et al., 2018). It is extremely rare for a patient to be affected by 
many lung diseases concurrently. Therefore, only multi-class categori
zation sounds a better proposition as it would not be a preferable choice 

to evaluate only few multi-label diseases with relatively low accuracy 
rather than achieving promising outcomes in the case of multi-class 
classification. Again, in Trial 3, the classification performance was not 
so high compared to the Trials 4 to Trial 6. Since Trial 3 contained both 
viral and bacterial pneumonia, the model might not be able to detect 
minute differences in the features associated with these two similar 
classes. Even though the CXR images are cheaper compared to the 
computed tomography (CT) scan images, but the latter could produce 
better classification performance (Baghdadi et al., 2022; Islam & Nahi
duzzaman, 2022). Even after combining multiple datasets, number of 
images in some categories are still limited, which can limit the overall 
performance of the model developed. However, the model can be further 
updated with additional images from different categories when avail
able in public. 

5. Application of CNN-ELM model in Android App 

5.1. App design and development 

A functional prototype of an Android App was designed and devel
oped to demonstrate the implementation of the developed model in real 
life application. The trained CNN-ELM model was converted to TFLite 
model format for developing an Android app with a user interface (UI), 
which was used to classify sample X-ray images in a live Android device. 
The front end and back end operational flow charts are illustrated in 
Fig. 15. To scan a sample Chest X-ray image, first the affected subject 
must undergo a chest X-ray in a health centre or hospital. The X-ray film 
will then be scanned and uploaded to the mobile device, followed by fast 
results via the mobile app. After a successful classification, the class, 
accuracy, and processing time of the CXR image will be shown. 

5.2. App testing 

There are in total 17 classes of respiratory diseases that can be 

Fig. 15. Steps for scanning and classifying an X-ray image on an Android device.  
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detected using the TFLite model. Among the 17 classes, 9 classes with 
test accuracy and inference runtime are shown in Fig. 16. All the tests 
were performed using GPU acceleration and took around 15–21 ms to 
run inference using the sample CXR images. However, GPU acceleration 
is not mandatory to classify a sample image. For the 9 classes listed 
above, all the tests indicate accuracy in the range of 0.7–1.0. All tests are 
performed using a OnePlus 6T running Android 11 on Snapdragon 835 
SoC. 

It is the first time an Android app has been able to detect 17 different 
types of respiratory diseases from the CXR images using the CNN-ELM 
model developed in this study. The time required (15–21 ms) to detect 

the lung diseases with high accuracy via the Android app would be much 
less than a medical professional. Hence, this app can save a lot of time 
when multiple X-ray images needs to be checked one-by-one. Further
more, the App will be a guiding tool for the radiologists in the cases 
where human eyes fail to identify the distinctive features in the CXR 
image for lung disease identification. The number of disease classes and 
accuracy of the model can be further improved in the future by col
lecting additional CXR images. Currently, the app is only compatible 
with Android devices, but an iOS app can also be developed. 

Fig. 16. TFLite based image classification of (A) Tuberculosis, (B) Hernia, (C) Atelectasis, (D) (E) Pleural Thickening, (F) COVID-19, (G) Fibrosis, (H) Emphysema, (I) 
Mass and Pneumothorax. 
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6. Conclusion 

The study provided a novel CNN-ELM framework for accurately 
detecting various life-threatening lung diseases from CXR images with a 
small number of model parameters and layers and a short processing 
time. A large dataset containing 17 classes was customized by inte
grating several publicly available datasets. Following that, a parallel 
CNN was designed to extract the most discriminant features, which were 
then entered into a simple ELM for disease classification. For the first 
time, the proposed CNN-ELM model successfully identified 17 types of 
lung diseases with an average Precision, Recall, F1-Score and Accuracy 
of 0.94, 0.89, 0.91 and 90.92% respectively. Even when other SOTA 
models failed to achieve any reasonable performance metrics other than 
AUC with 14 diseases, whereas the proposed model achieved perfor
mance metric values close to 90% or above with 17 diseases. Significant 
reduction in number of layers (7) and parameters (7.6 M) compared to 
other SOTA models indicated the model’s simplicity. Class wise COVID- 
19 Precision, Recall, and F1-Score of 0.99 or above with CXR17 
demonstrated that the model could reliably detect COVID-19. Further
more, the models outperformed the previously established and well- 
known SOTA models for other various multiclass and binary classifica
tions with respect to all performance metrics considered here. The 
development of an Android mobile app using the CNN-ELM model 
further shows the feasibility to implement the model in real-life scenario 
for fast detecting the lung diseases precisely and confidently during this 
COVID-19 pandemic. To detect a single CXR image, the CNN-ELM 
consumed <1 ms on a computer and 21 ms on an Android mobile de
vice, respectively. This further illustrated the model’s suitability in 
helping the medical professionals to receive real-time prediction of lung 
diseases. 
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