9 research outputs found

    Optical image encryption technique based on deterministic phase masks

    Get PDF
    The double-random phase encoding (DRPE) scheme, which is based on a 4f optical correlator system, is considered as a reference for the optical encryption field. We propose a modification of the classical DRPE scheme based on the use of a class of structured phase masks, the deterministic phase masks. In particular, we propose to conduct the encryption process by using two deterministic phase masks, which are built from linear combinations of several subkeys. For the decryption step, the input image is retrieved by using the complex conjugate of the deterministic phase masks, which were set in the encryption process. This concept of structured masks gives rise to encryption-decryption keys which are smaller and more compact than those required in the classical DRPE. In addition, we show that our method significantly improves the tolerance of the DRPE method to shifts of the decrypting phase mask-when no shift is applied, it provides similar performance to the DRPE scheme in terms of encryption-decryption results. This enhanced tolerance to the shift, which is proven by providing numerical simulation results for grayscale and binary images, may relax the rigidity of an encryption-decryption experimental implementation setup. To evaluate the effectiveness of the described method, the mean-square-error and the peak signal-to-noise ratio between the input images and the recovered images are calculated. Different studies based on simulated data are also provided to highlight the suitability and robustness of the method when applied to the image encryption-decryption processes

    Optical triple random phase encryption

    Get PDF
    We propose an optical security technique for image encryption using triple random-phase encoding (TRPE). In the encryption process, the original image is first double-random-phase encrypted. The obtained function is then multiplied by a third random-phase key in the output plane, to enhance the security level of the encryption process. This method reduces the vulnerability to certain attacks observed when using the conventional double random-phase encoding (DRPE). To provide the security enhancement of the proposed TRPE method, three attack cases are discussed: chosen-plaintext attacks, known-plaintext attacks, and chosen-ciphertext attacks. Numerical results are presented to demonstrate feasibility and effectiveness of the proposed method. Compared with conventional DRPE, the proposed encryption method can provide an effective alternative and has enhanced security features against the aforementioned attacks

    Phase-only filter with improved discrimination

    No full text
    The optimization of a phase-only filter (POF) in terms of discrimination capability is presented. The notion of a phase-difference histogram and its modification are proposed for selecting the support function of the POF. Some numerical results obtained with the conventional POF and the optimized POF are given. The discrimination capability is increased significantly

    Optical image encryption technique based on deterministic phase masks

    No full text
    The double-random phase encoding (DRPE) scheme, which is based on a 4f optical correlator system, is considered as a reference for the optical encryption field. We propose a modification of the classical DRPE scheme based on the use of a class of structured phase masks, the deterministic phase masks. In particular, we propose to conduct the encryption process by using two deterministic phase masks, which are built from linear combinations of several subkeys. For the decryption step, the input image is retrieved by using the complex conjugate of the deterministic phase masks, which were set in the encryption process. This concept of structured masks gives rise to encryption-decryption keys which are smaller and more compact than those required in the classical DRPE. In addition, we show that our method significantly improves the tolerance of the DRPE method to shifts of the decrypting phase mask-when no shift is applied, it provides similar performance to the DRPE scheme in terms of encryption-decryption results. This enhanced tolerance to the shift, which is proven by providing numerical simulation results for grayscale and binary images, may relax the rigidity of an encryption-decryption experimental implementation setup. To evaluate the effectiveness of the described method, the mean-square-error and the peak signal-to-noise ratio between the input images and the recovered images are calculated. Different studies based on simulated data are also provided to highlight the suitability and robustness of the method when applied to the image encryption-decryption processes

    Optical triple random phase encryption

    No full text
    We propose an optical security technique for image encryption using triple random-phase encoding (TRPE). In the encryption process, the original image is first double-random-phase encrypted. The obtained function is then multiplied by a third random-phase key in the output plane, to enhance the security level of the encryption process. This method reduces the vulnerability to certain attacks observed when using the conventional double random-phase encoding (DRPE). To provide the security enhancement of the proposed TRPE method, three attack cases are discussed: chosen-plaintext attacks, known-plaintext attacks, and chosen-ciphertext attacks. Numerical results are presented to demonstrate feasibility and effectiveness of the proposed method. Compared with conventional DRPE, the proposed encryption method can provide an effective alternative and has enhanced security features against the aforementioned attacks
    corecore