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Abstract. The double random phase encoding (DRPE) scheme, which is based on a 4f optical correlator system, is
considered as a reference for the optical encryption field. In this work, we propose a modification of the classical
DRPE scheme based on the use of a  novel class of  structured phase masks,  the deterministic  phase masks.  In
particular, we propose to conduct the encryption process by using two deterministic phase masks, which are built
from linear combinations of several sub-keys. For the decryption step, the input image is retrieved by using the
complex conjugate of the deterministic phase masks, which were set in the encryption process. This new concept of
structured masks gives rise to encryption-decryption keys which are smaller and more compact than those required
in the classical DRPE. In addition, we show that our method significantly improves the tolerance of the DRPE
method to shifts of the decrypting phase mask –when no shift is applied, it provides similar performance to the
DRPE scheme in terms of encryption-decryption results-. This enhanced tolerance to the shift, which is proven by
providing numerical simulation results for gray-scale and binary images, may relax the rigidity of an encryption-
decryption experimental implementation set-up. To evaluate the effectiveness of the described method, the mean-
square-error (MSE) and the peak signal-to-noise ratio (PSNR) between the input images and the recovered images
are calculated. Different studies based on simulated data are also provided to highlight the suitability and robustness
of the method when applied to image encryption-decryption processes. 
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1 Introduction

Optical technologies have become increasingly important for securing information, recognition,

and have been widely explored to  encrypt  sensitive information because of  their  high-speed

operation, parallel processing and multiple dimensional capabilities.1-8 Optical security includes

numerous parameters for encryption including wavelength, phase information, spatial frequency

and polarization of light. Several optical encryption techniques have been suggested with the aim

to  broaden the  research area of  information  security3,4,5,6.  Among them,  Réfrégier  and Javidi

proposed a  forefather  optical  encryption  method based on a  double  random phase encoding

(DRPE)7.  By  using  this  encryption  technique,  which  may  be  implemented  by  means  of  a
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Vanderlugt 4f processor, original data embedded in two-dimensional amplitude information is

transformed into a white stationary noise. This is done by setting two random phase masks in the

input and the Fourier planes. Since the publication of this method, the DRPE scheme has been

applied in different domains, such as fractional Fourier transform (FRT)9,10, Fresnel transform

(FrT)11,12,13, gyrator transform (GT)14,15, quaternion Fourier transform16, diffractive imaging17, dual

fractional  Fourier-wavelet18,  fractional  Mellin19,  and  Hartley transform20.  Nevertheless,  it  has

been demonstrated that DRPE scheme is vulnerable to some type of attacks21,22,23 and due to its

high shift sensitivity, it requires high alignment accuracy in the spatial domain systems. In this

regard,  several methods have been proposed to improve the shift tolerance of the decrypting

phase  mask24,25.  Nomura  and  Javidi26  proposed  an  optical  double  random  phase  encryption

method using a joint transform correlator (JTC) architecture. Seo and Kim25 suggested instead a

scheme applying a virtual phase image to conceal the original one under a JTC architecture that

is robust to shift of the encrypted image. These methods do not produce complex conjugates of

the phase key and therefore suffer from autocorrelation terms that appear in the output plane. In

addition, in the above-stated methods, the decryption process is performed by optical schemes

based on a  4f  correlator  which still  require  an extremely precise alignment.  To increase the

security, asymmetric cryptosystem has been proposed, for instance, by Rajput and Nishchal27 to

make the decryption keys different from the encryption ones. Other alternatives to the classical

DRPE scheme describe the use of structured phase masks in the encryption-decryption process

based on Fresnel zone plate (FZP), toroidal zone plate (TZP) or radial Hilbert mask (RHM).

Barrera  et  al28,29 introduced toroidal  phase masks  as  an  alternative.  Tebaldi  et  al30 presented

results  on image encryption based on fractal  encrypting masks.  Abuturab31 proposed a  color

information security scheme based on Arnold transform in the GT domain, in which the phase
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function of FZP is used to generate double structured phase masks. Vashisth et al32 presented an

image encryption by employing the phase retrieval algorithm in the fractional Mellin transform

domain,  in  which  two  structured  phase  masks  are  constructed  based  on  TZP  and  RHM,

respectively. Singh et al33 proposed the double phase-image encryption using GTs, in which the

structured phase mask is derived from DVFL in the frequency plane. Some recent studies have

also introduced structured phase mask based on devil’s vortex Fresnel lens (DVFL)34,35,36,37,38.

To properly use an encryption method in security applications, the system must be resistant to

potential loss of data during the decryption process and very tolerant to alignment accuracy. To

fulfill  such  requirements,  in  this  paper  we  propose  a  modification  of  the  DRPE encryption

scheme, based on a novel category of structured masks that we called deterministic phase masks.

Such deterministic masks, based on a linear combination of several sub-keys, allow the system to

enhance the optical alignment tolerance to shifts of the required phase masks when compared to

the classical DRPE method. Another advantage of our  method is the compact and tiny size of the

encoding-decoding keys, facilitating the keys exchange process. In addition, there is no need to

send  the  mask  itself  for  reconstruction,  but  only  a  small  set  of  numerical  parameters.  This

situation may substantially prevent the loss of information of the keys.

The outline of this manuscript is as follows: First, the principle of the encryption-decryption

algorithm and the masks generation are described in Sec. 2. Sec. 3 presents several simulated

results as a proof of concept of the proposed method. In particular, the encryption-decryption of

two different images is analyzed: (i) a black and white text image; and (ii) a 256 gray-scale

image. To evaluate the quality of the recovered images, the mean-square-error (MSE) and the

peak  signal-to-noise  ratio  (PSNR)  between  the  input  images  and  the  recovered  images  are

calculated. Next, the robustness of the deterministic phase masks based method is studied in Sec.
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4. Three different situations are analyzed: Robustness to shifts of the phase masks in the Fourier

plane (Sec. 4.1), robustness to loss of encrypted data (Sec. 4.2), and robustness to deterministic

keys attacks (Sec. 4.3). Finally, the main conclusions of the work are provided in Sec. 5.

2 Principle of the encryption-decryption method

In  this  section,  we  first  review  the  DRPE  optical  setup,  which  is  used  to  conduct  the

deterministic  keys  approach that  we propose (sub-Sec.  2.1).  Afterwards,  in  sub-Sec.  2.2,  we

provide the theoretical background for the generation of deterministic masks. 

2.1. Encryption and decryption schemes

The scheme for image encryption and decryption we propose in this work requires the use of the

novel deterministic based masks. For the proper implementation of them, we use a modification

of  the well-known DRPE optical  setup,  which is  based on a  Vanderlugt 4 f  system. The

schemes  for  the  encryption  and  decryption  processes  are  shown  in  Figs.  1(a)  and  1(b)

respectively, where L1 and L2 are two convergent lenses of focal length f and DK1 and DK2 are

the generated deterministic phase masks.

During the encryption stage, the input image to be encrypted f ( x , y )  is first multiplied by a

deterministic phase mask (DK 1)  in the input plane. The resulting complex image is Fourier

transformed,  and  then  multiplied  by  a  second  deterministic  phase  mask  (DK 2)  in  the

frequency plane. The encrypted image is then obtained by performing inverse Fourier transform

(IFT). Note that in an optical scheme as in Fig. 1, the operation to be performed is not the IFT

but the direct FT. In the simulated case, the complex output encrypted image c (x , y )  can be

written as:
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          , , · 1 , · 2 , ,  c x y IFT FT f x y DK x y DK u v

22\* MERGEFORMAT ()

where  FT {. }  and  IFT {. }  represent the Fourier transform and inverse Fourier transform,

respectively.  The  decryption  process  is  the  reverse  of  the  encryption  process,  where  the

encrypted image is Fourier transformed, and then multiplied by the complex conjugate of the

mask (DK 2) . An inverse Fourier transform is then performed, followed by multiplication by the

complex conjugate of the first mask (DK 1) . The decrypted image f ' (x , y)  can be expressed as:

         ' * * , , · 2 , · 1 , ,f x y IFT FT c x y DK u v DK x y
 3

3\* MERGEFORMAT ()
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where * indicates the conjugate of the deterministic phase mask. 

Note that in the case of registering the intensity of the decrypted image, the multiplication by 

DK1* is not needed.

Fig. 1 Optical scheme for: (a) encryption process; and (b) decryption process.

As an example, an optical architecture has been depicted with the aim to implement the encryption-

decryption scheme shown in Fig. 1. The setup of such architecture is presented in Fig. 2. 
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Fig. 2 (M) mirror, (BS) beam Splitter, (L) lenses, (PH) pinhole, (SLM) Spatial light modulator, (CCD) CCD camera,
(PZT) piezo-electric transductor. ARM1 phase-shifting interferometric correlator for image encryption. A 4f

correlator (L1-L3) is introduced in the arm of a Mach-Zehnder interferometer (BS1, BS2, PZT, BS3). In this way we
obtain the interferences of the encrypted image with a reference wave on CCD1 camera where the interferences are
digitalized. ARM2 the encrypted image is displayed in the SLM3 and its Fourier transform is obtained at the SLM4

plane. Finally the decrypted image is formed at the CCD2 camera.

The setup sketched in Fig 2 consists of two optical arms. In the ARM1 (green dashed line) the encrypted

image is obtained, while in the ARM2 the decryption process is performed. In the ARM1, the 4f

correlator in Fig 1(a) is introduced in a Mach-Zehnder interferometer (Phase-Shifting Interferometric

Correlator39) to obtain the amplitude and phase of the encrypted image. The keys DK1 and DK2 are

introduced on SLM1 and SLM2 respectively. In the ARM2 (orange dotted line), the 4f correlator of Fig

1(b) is implemented. The encrypted image is introduced in the SLM3 and the propagated beam is Fourier

transformed by means of the convergent lens L5. At the Fourier plane, the key DK2* is introduced on the

SLM4, and finally the decrypted image is recorded by the CCD2. In ARM1 a single interference can be
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recorded. In this case a tilted reference should be used to separate the different diffracted orders. The same

tilted reference has to be used in ARM2. 

2.2 Deterministic masks generation 

The first step in the deterministic mask (DK )  construction procedure consists in defining an order of

encryption (m)  to specify the number of sub-keys (NS) into the mask, where NS=(2m× 2m ) . By

setting the value of m (m is an integer number), we split the input image in NS  equal sub-blocks of

size d=dim/2m , where (dim )  is the size of the input image. Then, we generate a linear phase with

random orientation and frequency for each available sub-key. 

For simplicity, we show an example for the case  m=2 . Thus, we consider a deterministic key

(DK )  with size (256 ×256 ) divided into 16 sub-keys of size (64×64 ) , where d=dim/22 .

The resulting DK can be written as a linear combination of the stated 16 sub-keys M ij , as shown by

the following relation:

 
4 4

1 1

, ij
i j

DK M d d
 

 ���
 4

4\* MERGEFORMAT ()

More precisely, to set each particular sub-key to an appropriate spatial position, we construct the complete

DK image in the spatial domain by using the following equation (for m=2 ):

   
4 4

1
i 1 j 1

1 1
. .

2 2
 , ,  , ,ij

x i d y j d

DK x y rect M x y
d d 

� �� � � �� � � �   � �� � � �� � � �
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� �
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where  x and  y  are defined into the interval  [ 1, dim ]  and  rect  is the rectangle function

described as:

 
1 1

1,      
 , , 2 2

0,  

for x and y
rect x y

otherwise

�  � �
��  6

6\* MERGEFORMAT ()

and M ij  is defined by:

        , 2 . . , ,   1,.., ,ij k k ijM x y exp i u x v y exp i x y k NS    
 7
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where uk   and vk   are randomly generated in the interval  [ 1, d ] . 

To illustrate the above described procedure, an example of a deterministic key generated for  m=2 is

illustrated in Fig. 3.  

Fig. 3 Generation of deterministic keys.

In addition, the same scheme shown above for m=2 can be generalized for an arbitrary m value, and in

such case, the deterministic key is expressed as follows:
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      
m m2 2

k
i 1 j 1

 DK exp iφ x, y ,     1 2 1 ,mk i j
 
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and  it  is  completely  determined  just   by  choosing  the  following  set  of  parameters:

    1,...,
dim, , ·k k k k NS

m w v d u


 
.

For the sake of clarity, Fig. 4 shows the real part of some generated deterministic masks for m = 2, 3 and

4 (in Figs. 4(a), 4(b) and 4(c), respectively).

Fig. 4 Generated deterministic keys used for encryption: (a) m=2, (b) m=3, (c) m=4.

As shown in Fig. 2, for the experimental implementation of the proposed technique, a spatial light

modulator (SLM) can be used to generate the deterministic keys proposed. In such a case, the largest

number of sub-keys to be implemented is limited by the number of pixels of the modulator. Note that for

a fixed size of the SLM, the larger the number m set to implement the sub-keys, the lower the number of

pixels used to implement such sub-key. By increasing the order m, we can arrive to a minimum sub-key

size of 1x1 pixels. In this particular case, the idea of a linear phase is lost and the classical DRPE method
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is obtained. Thus, the deterministic key based approach can be understood as a generalization of the

classical DRPE method.     

3 Proof of concept of the method: numerical simulations for the encryption-decryption 

process

In this section, we study the feasibility, effectiveness, and sensitivity of the proposed method

based on simulated results. In this work, the influence of some experimental parameters on the

imaging  process  has  not  been  considered,  such  as  SLM  dimensions,  bandwidth,  etc.  The

simulation tests were carried out on the Matlab2014a platform. A gray-scale image (Lena image)

and a binary image (with the text “Optical Encryption”), with the  size of 256×256 pixels, are

used as the original images to be encrypted, as shown in Fig.5 (a) and 5(b), respectively. 
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 Fig. 5 Simulated results: (a) Input Lena image; (b) Input binary text image; (c) real part of the first deterministic

key DK1 used in the encryption process (object plane, see Fig. 1); (d) real part of the second deterministic key DK2

used in the encryption process (Fourier Transform plane); (e) encrypted image for the Lena image; and (f) encrypted

image for the text image.

In addition, Figs. 5(c) and 5(d) display, the real parts of the two deterministic keys DK 1  and

DK 2  used in the encryption process, which have been generated according to Sec. 2 and by

setting m=2. By contrast, Figs. 5(e) and 5(f) respectively show the images encrypted by using our

method, which correspond to the original images in Figs. 5(a) and 5(b), respectively. As we can

see, any information of the original images is observed at the encrypted images in Figs. 5(e) and

5(f).    

In addition, to prove the validity of the proposed approach, we performed the image decryption

of the encrypted images shown in Figs. 5(e) and 5(f) by using the correct keys (i.e., by using the
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masks obtained by conducting the complex conjugated of the deterministic keys DK1 and DK2

shown in Figs. 5(c) and (d), respectively). The corresponding results are as shown in Figs. 6(a)

and 6(b), for the Lena image and the binary text image, respectively.

Fig. 6 Decrypted images: (a) decrypted image of Lena, and (b) decrypted text image. 

To evaluate the quality of the recovered images, the mean-square-error (MSE), and the peak

signal-to-noise ratio (PSNR) between the input images (Figs. 5(a) and 5(b)) and the recovered

images (Figs. 6(a) and 6(b)) were calculated. The MSE and the PSNR are respectively defined

as:

   
1 1

2

0 0

1
, , , 

N M

x y

MSE f x y f x y
N M

 

 

 
�

���
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2

10

255
 10 ,PSNR log

MSE

� �
 � � �

� � 

1010\* MERGEFORMAT ()

where  f (x , y )  and  f ' (x , y )  denote  the  original  image  and  the  decrypted  image,

respectively. In turn, N×M is the number of pixels of the original image. It may be noted that a

smaller value of
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the MSE means greater similarity between the original and recovered image. In turn, the greater

PSNR value, the better the quality of the retrieved image. The MSE between the retrieved image

(Fig. 6(a)) and the original gray-scale image (Fig. 5(a)) is 7.31× 10−32 , while the PSNR value

obtained for the same images is 359.13 . When conducting the comparison for the binary text

image  (Fig.  5(b)  and  6(b)),  the  obtained  MSE  and  PSNR  values  are  2.22× 10−32  and

364.77 , respectively.  In both cases,  the obtained MSE and PSNR values indicate that the

images can be considered as practically equal to the original ones. 

Table 1 summarizes the MSE and PSNR values obtained by comparing our proposed approach

and the classical DRPE version. Results are given both for the Lena image (first table row) and

for the binary text image (second table row). 

Table 1 MSE and PSNR results between original and retrieved images for the DRPE scheme and our proposed

method.

Note that the MSE and PSNR values obtained for the decrypted images when using our proposed

deterministic key generation are quite similar to those obtained by using the DRPE scheme.

Thus,  our  proposed  technique  appears  a  good  alternative  to  the  DRPE method  in  terms  of

decrypted image quality. 

The performance of the proposed scheme is also calculated in terms of the relative error (RE)

between the original and the decrypted image. The RE between original and decrypted image is

defined as:

14
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7.31·10-32 1.23·10-31 359.13 357.18
2.22·10-32 2.33·10-32 364.77 364.45
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The RE value equal to zero indicates that the original image is perfectly retrieved. The calculated

values  of  RE  for  Fig.  5(a)  and  5(b)  and  their  retrieved  images  Fig.  6(a)  and  6(b)  are

2,75 ×10−31  and  4,07 × 10−31 ,  respectively,  which  means  that  the  original  images  are

successfully obtained. Note that the obtained RE values are in agreement with data given in

Table 1.

4 Deterministic masks based method robustness

In this section, we analyze the robustness of the proposed method by applying it to three different

situations that can arise in experimental implementations: (i) robustness to spatial shifts of the

decrypting deterministic phase masks (Sec. 4.1), (ii) robustness to certain loss of encrypted data

(Sec. 4.2), and (iii) robustness to external attacks (use of unauthorized deterministic keys; Sec.

4.3). 

4.1 Robustness to spatial shifts of the decrypting phase mask in the Fourier plane

 In this sub-section, we examine the robustness of the proposed method to the shift tolerance in

comparison  with  the  well-established  DRPE method.  Figure  7  shows  the  decrypted  images

obtained with the DRPE decryption method when the second phase mask in the Fourier plane

(i.e., random phases mask set as encryption key 2, used in the decryption step) is shifted in x and

y directions in steps of one (Fig. 7(a)), two (Fig. 7(b)) and three (Fig. 7(c)) pixels for the Lena

image. Same results are respectively provided in Figs. 7(d), 7(e), and 7(f) for the binary text
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image. As can be seen, a slight shift of the key in the DRPE system results in large errors during

decryption process, and the image cannot be recovered in any case.

Fig. 7 Decrypted images on DRPE when the decrypting key is shifted at the Fourier plane for: (a) one, (b) two, (c)

three pixels for the Lena image; and (d) one, (e) two, and (f) three pixels for the binary text image.

Figure 8 shows the same analysis discussed above but conducted with the new proposed method.

In particular, we show the decrypted images obtained when the decrypting deterministic phase

mask is shifted in the Fourier plane (i.e., the mask DK2*; see Fig. 1 for decryption step) by one

(Fig. 8(a)), two (Fig. 8(b)) and three (Fig. 8(c)) pixels from the matching position, for the Lena

image. The same simulations are conducted for the binary text image, and the corresponding

results are provided in Figs. 8(d), 8(e) and 8(f), respectively. Even when the decrypted key mask is

shifted from the matching position along the x-y axis, the decrypted images (Fig. 8) are still

visually  recognizable,  being  much  better  reconstructed  than  those  obtained  with  the  DRPE

method (presented in Fig. 7). In fact, the MSEs obtained between the original and the decrypted

images were: 0.0198 (for one pixel shift), 0.0246 (two) and 0.0328 (three) for the Lena image;

and 0.0125 (for one pixel shift), 0.0237 (two) and 0.0285 (three) for the binary text image. These
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small MSE values indicate that, unlike the DRPE method (Fig. 7), our proposed technique allows

some original information to be retrieved (Fig.8). The simulated results shown in Fig. 7 prove

that the DRPE method is very sensitive to shifts of the key in the decryption process. Under such

scenario, very small misalignments of the decrypting phase mask (1 pixel) prevent the DRPE

method  from  image  decryption.  On  the  contrary,  the  proposed  deterministic-based  method

enhances the shift tolerance of the system (see Fig. 8) when compared to the DRPE performance,

and thus, the proposed encryption algorithm can be considered as an efficient alternative to the

DRPE method.

    

Fig. 8 Decrypted images obtained with our proposed technique when the decrypting key DK2* is shifted for: (a)

one, (b) two, (c) three pixels for Lena image; and (d) one, (e) two, and (f) three pixels for the binary text image.

4.2  Robustness to the loss of the encrypted data

We have also studied the robustness to the loss of the encrypted data under network failure

during  the  image  transmission.  To  simulate  losses  of  the  encrypted  information  before

decryption, some parts of the encrypted images were blocked by means of square black filters

with different sizes (from 1x1 to 128x128 pixels), which were placed in random positions. Then,
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the MSE coefficient corresponding to the decrypted images was calculated. As an example, Fig.

9 shows the data loss in the encrypted images for the Lena image (9(a)-9(d)) and the binary text

image (Figs. 9(e)-9(h)) when using different pixel sizes for the filter (i.e., the black squares):

15x15 pixels (Fig. 9(a) and 9(e)), 45x45 pixels (Fig. 9(b) and 9(f)), 75x75 pixels (Fig. 9(c) and

9(g)) and 128x128 pixels (Fig. 9(d) and 9(h)). In all the cases shown in Fig. 9, we generated the

phase masks by setting m=3 (so, 64 sub-key masks were implemented). As stated above, in each

case the generated filter was centered on arbitrary position of the encrypted image. 

Fig. 9 Encrypted images for the Lena (a)-(d) and binary text (e)-(h) with loss of information of different pixels sizes:

(a) and (e) 15x15 pixels, (b) and (f) 45x45 pixels, (c) and (g) 75x75 pixels and (d) and (h) 128x128 pixels.

The corresponding recovered images are respectively presented in Figs. 10(a)-(d) for the Lena

image and in  Figs.  10(e)-(h)  for the binary text  image.  In  addition,  the corresponding MSE

values between the original images and the decrypted ones are included as insets in the figures. It

is evident that, the larger the information loss in the encrypted image, the larger the MSE value

obtained. However, a rough version of the original image can be retrieved and recognized in all
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the  cases.  The  quality  of  these  decrypted  images  can  be  improved  by  image  processing

operations. From the above-stated simulations, we confirm that the proposed algorithm is robust

to data encryption losses.

      

Fig. 10 Decrypted images obtained for the Lena (a)-(d) and binary text (e)-(h) encrypted images. The results

provided correspond to an information loss in the encrypted images with a pixel size of: (a) and (e) 15x15 pixels; (b)

and (f) 45x45 pixels; (c) and (g) 75x75 pixels; and (d) and (h) 128x128 pixels.

Finally, in addition to the visual analysis presented in Fig. 10, a more quantitative analysis is presented

below.  We have calculated  the  MSE for  original-decrypted  images  (for  the  Lena case)  when the

decrypted image was obtained with a different amount of loss of information in the encrypted images.

The information loss was performed by selecting a random position of the blocker which presented a

random size (into a size range between 1x1 to 128x128 pixels). MSE results obtained after performing

1000 runs are shown in Fig.  11.  In addition,  the above-stated simulations  were repeated for

different values of the encryption order  m:  m=2 (Fig. 11(a));  m=3 (Fig. 11(b)) and  m=4 (Fig.

11(c)). In all the cases, we observe how larger blocker sizes correspond to bigger MSE. In addition, the

larger the parameter m we set, the lower the MSE fluctuation observed. Note that for the simulated results
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performed, even in the case of the largest information losses (i.e., information blocker with 128x128

pixels), the MSE values are always smaller than 0.1, which demonstrates robustness to the loss of

encrypted data.

Fig. 11 MSE values obtained between the original-decrypted images (for the Lena case) as a function of the blocker

length (in pixels) set at the encrypted image. Results are given for different m values. 

4.3. Robustness to external attacks: decryption based on unauthorized deterministic keys

Because the calculation of a deterministic key (DK) is analytically performed, instead of sending

the  mask  itself,  we  can  send  a  set  of  numerical  parameters  to  reproduce  it:  {dim,  m and

{wk=vk.d+uk}k=1,…,NS } (see Sec. 2.2). The change of a single bit in the numerical set should produce

a huge different encrypted image, this ensuring the security of the system to external attacks. To

analyze this fact, the sensitivity of the deterministic method to a slight change in the numerical

set of the keys has been tested through a particular example. The original images –Lena image

(Fig. 5(a)) and binary text image (Fig. 5(b)) were encrypted by using two secret deterministic

keys DK1 and DK2, and as shown in Section 2.2, they were fully determined just by setting the

following parameters: 
    1,...,

dim, , ·k k k k NS
m w v d u


 

, where  
uk

  and 
vk

  are randomly generated

in the interval  [ 1, d ] . 

For a particular implementation, we took the following series of values:
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DK1: {dim=256x256, m=2, {4112, 1420, 2652, 1916, 155, 2250, 123, 3286, 2974, 4015, 1722,

867, 143, 992, 2675, 262}}.

DK2: {dim=256x256,  m=2, {842, 1169, 189, 1934, 2172, 2997, 2938, 2633, 215, 2163, 3636,

3525, 139, 2493, 3758, 84}}. 

By using  these  deterministic  keys  DK1 and DK2,  we obtained the  corresponding encrypted

images,  which  were  illustrated  in  Figs.  5(e)  and  5(f),  respectively,  and  decrypted  images

illustrated in Figs. 6(a) and 6(b), respectively. 

By contrast, Fig. 12 shows the decrypted images, for the Lena image (Fig. 12(a)) and the binary

text image (Fig. 12(b)), which were obtained by using a false key DK2 in the decryption process,

let us call it as DK2_b:

DK2_b: {dim=256x256,  m=2, {520, 984, 1642, 346, 3161, 2554, 732, 3157, 1139, 514, 2873,

881, 965, 3512, 481, 1827}}.

As shown in Fig. 12, the use in the decryption process of a deterministic key (DK2_b) different

from the original one (DK2), does not allow us to retrieve any information of the original image.

In turn, decrypted images shown in Fig. 13 for the Lena image (Fig. 13(a)) and the binary text

image  (Fig.  13  (b)),  were  obtained  by  performing  a  slight  modification  of  the  original

deterministic  key DK2.  In  particular,  the  modified  deterministic  key  was  achieved  by only

changing one of the 16-subkeys of DK2, i.e., the value  w(k=10) = 2163 in DK2 was changed to

122. This situation led to the deterministic key DK2_c: 

DK2_c:{dim=256x256,  m=2, {842, 1169, 189, 1934, 2172, 2997, 2938, 2633, 215,  122, 3636,

3525, 139, 2493, 3758, 84}}.

From the previous simulated results, we observed that for the m=2 case, a satisfactory decryption

process was not possible when using incorrect deterministic keys (Figs. 12 and 13), even when
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only one of the decryption sub-keys was changed (Fig. 13). Thus, the use of the very exact pair

of deterministic keys is mandatory to properly decrypt the original image with our proposed

technique. This situation highlights the robustness of the method to external attacks. 

                                        

Fig. 12 Decrypted images obtained by using an incorrect deterministic key (DK2_b) in the decryption process: (a)

for the Lena image; and (b) for the binary text image. 

             

Fig. 13 Decrypted images obtained by using the incorrect deterministic key DK2_c: (a) for the Lena image; and (b)

for the binary text image.

4 Conclusion

In the present manuscript we propose an encryption-decryption method to overcome the extremely

difficult axis alignment requirements of the double random phase encoding (DRPE) method, which
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arises from the use of a 4f correlator in the decryption stage. Our technique uses a pair of deterministic

phase masks defined by an order of encryption parameter m and a linear combination of several sub-keys.

The numerical results provided in this work demonstrate that the proposed deterministic mask based

encryption-decryption technique has several interesting features in comparison to the DRPE. First, the

system provides similar results to the classical DRPE method, in terms of image retrieving for an ideally

aligned system. However, our method is much less affected by spatial shifts of the phase mask in the

Fourier  plane than the DRPE, allowing for  less precise alignment  requirements  during decryption

processes. Second, we have demonstrated that our method is able to reconstruct the original image under

distortions caused by the occlusion of specific parts of the encrypted images, which may be important in

case of a network failure during image transmission. Last but not least, the phase masks generation

relays on a simple set of numerical parameters and therefore, the reconstruction of the image does not

necessary imply the sending of the totality of the mask, but only of the proper set of parameters. This

situation largely reduces the chances of loss of information during the transmission stage. The proposed

method can be then presented as a promising alternative to standard methods and may find an excellent

application in securing data. 
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Caption List

Fig. 1 Optical setup for: (a) encryption process; and (b) decryption process.

Fig. 2 (M) mirror, (BS) beam Splitter, (L) lenses, (PH) pinhole, (SLM) Spatial light modulator,

(CCD)  CCD  camera,  (PZT)  piezo-electric  transductor.  ARM1  phase-shifting  interferometric

correlator for image encryption. A 4f correlator (L1-L3) is introduced in the arm of a Mach-

Zehnder interferometer (BS1, BS2, PZT, BS3). In this way we obtain the interferences of the

encrypted image with a reference wave on CCD1 camera where the interferences are digitalized.

ARM2 the encrypted image is displayed in the SLM3 and its Fourier transform is obtained at the

SLM4 plane. Finally the decrypted image is formed at the CCD2 camera.

Fig. 3 Generation of deterministic keys.

Fig. 4 Generated deterministic keys used for encryption: (a) m=2, (b) m=3, (c) m=4.

Fig. 5 Simulated results: (a) Input Lena image; (b) Input binary text image; (c) real part of the

first deterministic key DK1 used in the encryption process (object plane, see Fig. 1); (d) real part

of the second deterministic key DK2 used in the encryption process (Fourier Transform plane);

(e) encrypted image for the Lena image; and (f) encrypted image for the text image.

Fig. 6 Decrypted images: (a) decrypted image of Lena; and (b) decrypted text image.
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Fig. 7 Decrypted images on DRPE when the decrypting key is shifted at the Fourier plane for: 

(a) one, (b) two, (c) three pixels for the Lena image; and (d) one, (e) two, and (f) three pixels for 

the binary text image.

Fig. 8 Decrypted images obtained with our proposed technique when the decrypting key DK2* is

shifted for: (a) one, (b) two, (c) three pixels for Lena image and (d) one, (e) two, and (f) three

pixels for the binary image.

Fig. 9  Encrypted images for the Lena (a)-(d) and binary text (e)-(h) with loss of information of 

different pixels sizes: (a) and (e) 15x15 pixels, (b) and (f) 45x45 pixels, (c) and (g) 75x75 pixels 

and (d) and (h) 128x128 pixels.

Fig. 10 Decrypted images obtained for the Lena (a)-(d) and binary text (e)-(h) encrypted images.

The results provided correspond to an information loss in the encrypted images with a pixel size

of: (a) and (e) 15x15 pixels; (b) and (f) 45x45 pixels; (c) and (g) 75x75 pixels; and (d) and (h)

128x128 pixels.

Fig. 11 MSE values obtained between the original-decrypted images (for the Lena case) as a

function  of  the  blocker  length  (in  pixels)  set  at  the  encrypted  image.  Results  are  given for

different m values.

Fig.  12 Decrypted  images  obtained  by  using  incorrect  deterministic  key  (DK2_b)  in  the

decryption process: (a) for the Lena image; and (b) for the binary text image.

Fig. 13 Decrypted images obtained by using the incorrect deterministic key DK2_c: (a) for the

Lena image; and (b) for the binary text image.

Caption List
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Table  1  MSE and PSNR results  between original  and recovered  images  for  DRPE and the

proposed method.
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