16 research outputs found

    Solar eclipse demonstrating the importance of photochemistry in new particle formation

    Get PDF
    Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen-containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and reinitiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions.Peer reviewe

    Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests

    Get PDF
    Aerosols and their interaction with clouds constitute the largest uncertainty in estimating the radiative forcing affecting the climate system. Secondary aerosol formation is responsible for a large fraction of the cloud condensation nuclei in the global atmosphere. Wetlands are important to the budgets of methane and carbon dioxide, but the potential role of wetlands in aerosol formation has not been investigated. Here we use direct atmospheric sampling at the Siikaneva wetland in Finland to investigate the emission of methane and volatile organic compounds, and subsequently formed atmospheric clusters and aerosols. We find that terpenes initiate stronger atmospheric new particle formation than is typically observed over boreal forests and that, in addition to large emissions of methane which cause a warming effect, wetlands also have a cooling effect through emissions of these terpenes. We suggest that new wetlands produced by melting permafrost need to be taken into consideration as sources of secondary aerosol particles when estimating the role of increasing wetland extent in future climate change. Boreal wetlands emit terpenes which initiate atmospheric new particle formation to an even greater degree than is usually seen over boreal forests, according to direct measurements of volatile organic compounds from a Finnish wetland.Peer reviewe

    Detection distance of unprotected road-railway level crossings

    No full text

    Detection distance of unprotected road-railway level crossings

    No full text

    Safety inspections of railway-road level crossings

    No full text

    Safety audits at Finnish level crossings

    No full text

    Safety inspections of railway-road level crossings

    No full text
    corecore