1,469 research outputs found

    Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing

    Get PDF
    Microsupercapacitors (MSCs) have garnered considerable attention as a promising power source for microelectronics and miniaturized portable/wearable devices. However, their practical application has been hindered by the manufacturing complexity and dimensional limits. Here, we develop a new class of ultrahigh areal number density solid-state MSCs (UHD SS-MSCs) on a chip via electrohydrodynamic (EHD) jet printing. This is, to the best of our knowledge, the first study to exploit EHD jet printing in the MSCs. The activated carbon-based electrode inks are EHD jet-printed, creating interdigitated electrodes with fine feature sizes. Subsequently, a drying-free, ultraviolet-cured solid-state gel electrolyte is introduced to ensure electrochemical isolation between the SS-MSCs, enabling dense SS-MSC integration with on-demand (in-series/in-parallel) cell connection on a chip. The resulting on-chip UHD SS-MSCs exhibit exceptional areal number density [36 unit cells integrated on a chip (area = 8.0 mm x 8.2 mm), 54.9 cells cm(-2)] and areal operating voltage (65.9 V cm(-2))

    Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations

    Get PDF
    Recent advances in smart contact lenses are essential to the realization of medical applications and vision imaging for augmented reality through wireless communication systems. However, previous research on smart contact lenses has been driven by a wired system or wireless power transfer with temporal and spatial restrictions, which can limit their continuous use and require energy storage devices. Also, the rigidity, heat, and large sizes of conventional batteries are not suitable for the soft, smart contact lens. Here, we describe a human pilot trial of a soft, smart contact lens with a wirelessly rechargeable, solid-state supercapacitor for continuous operation. After printing the supercapacitor, all device components (antenna, rectifier, and light-emitting diode) are fully integrated with stretchable structures for this soft lens without obstructing vision. The good reliability against thermal and electromagnetic radiations and the results of the in vivo tests provide the substantial promise of future smart contact lenses

    Effects of Modification of Pain Protocol on Incidence of Post Operative Nausea and Vomiting.

    Get PDF
    BackgroundA Perioperative Surgical Home (PSH) care model applies a standardized multidisciplinary approach to patient care using evidence-based medicine to modify and improve protocols. Analysis of patient outcome measures, such as postoperative nausea and vomiting (PONV), allows for refinement of existing protocols to improve patient care. We aim to compare the incidence of PONV in patients who underwent primary total joint arthroplasty before and after modification of our PSH pain protocol.MethodsAll total joint replacement PSH (TJR-PSH) patients who underwent primary THA (n=149) or TKA (n=212) in the study period were included. The modified protocol added a single dose of intravenous (IV) ketorolac given in the operating room and oxycodone immediate release orally instead of IV Hydromorphone in the Post Anesthesia Care Unit (PACU). The outcomes were (1) incidence of PONV and (2) average pain score in the PACU. We also examined the effect of primary anesthetic (spinal vs. GA) on these outcomes. The groups were compared using chi-square tests of proportions.ResultsThe incidence of post-operative nausea in the PACU decreased significantly with the modified protocol (27.4% vs. 38.1%, p=0.0442). There was no difference in PONV based on choice of anesthetic or procedure. Average PACU pain scores did not differ significantly between the two protocols.ConclusionSimple modifications to TJR-PSH multimodal pain management protocol, with decrease in IV narcotic use, resulted in a lower incidence of postoperative nausea, without compromising average PACU pain scores. This report demonstrates the need for continuous monitoring of PSH pathways and implementation of revisions as needed

    Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse

    Get PDF
    A terahertz half-cycle pulse was used to retrieve information stored as quantum phase in an NN-state Rydberg atom data register. The register was prepared as a wave packet with one state phase-reversed from the others (the "marked bit"). A half-cycle pulse then drove a significant portion of the electron probability into the flipped state via multimode interference.Comment: accepted by PR

    Association between manganese superoxide dismutase promoter gene polymorphism and breast cancer survival

    Get PDF
    BACKGROUND: Manganese superoxide dismutase (MnSOD) plays a critical role in the detoxification of mitochondrial reactive oxygen species, constituting a major cellular defense mechanism against agents that induce oxidative stress. A genetic polymorphism in the mitochondrial targeting sequence of this gene has been associated with increased cancer risk and survival in breast cancer. This base pair transition (-9 T > C) leads to a valine to alanine amino acid change in the mitochondrial targeting sequence. A polymorphism has also been identified in the proximal region of the promoter (-102 C>T) that alters the recognition sequence of the AP-2 transcription factor, leading to a reduction in transcriptional activity. The aim of our study was to investigate possible associations of the -102 C>T polymorphism with overall and relapse-free breast cancer survival in a hospital-based case-only study. MATERIALS AND METHODS: The relationship between the MnSOD -102 C>T polymorphism and survival was examined in a cohort of 291 women who received chemotherapy and/or radiotherapy for incident breast cancer. The MnSOD -102 C>T genotype was determined using a TaqMan allele discrimination assay. Patient survival was evaluated according to the MnSOD genotype using Kaplan–Meier survival functions. Hazard ratios were calculated from adjusted Cox proportional hazards modeling. All statistical tests were two-sided. RESULTS: In an evaluation of all women, there was a borderline significant reduction in recurrence-free survival with either one or both variant alleles (CT + TT) when compared with patients with wild-type alleles (CC) (odds ratio, 0.65; 95% confidence interval, 0.42–1.01). When the analysis was restricted to patients receiving radiation therapy, there was a significant reduction in relapse-free survival in women who were heterozygous for the MnSOD -102 genotype (relative risk, 0.40; 95% confidence interval, 0.18–0.86). Similarly, when the homozygous and heterozygous variant genotypes were combined, there remained a significant reduction in relapse-free survival in this group (hazard ratio, 0.42; 95% confidence interval, 0.20–0.87). CONCLUSION: The MnSOD -102 variant allele appears to be associated with an improved recurrence-free survival in all patients, and more dramatically in subjects who received adjuvant radiation therapy

    Correlated Errors in Quantum Error Corrections

    Full text link
    We show that errors are not generated correlatedly provided that quantum bits do not directly interact with (or couple to) each other. Generally, this no-qubits-interaction condition is assumed except for the case where two-qubit gate operation is being performed. In particular, the no-qubits-interaction condition is satisfied in the collective decoherence models. Thus, errors are not correlated in the collective decoherence. Consequently, we can say that current quantum error correcting codes which correct single-qubit-errors will work in most cases including the collective decoherence.Comment: no correction, 3 pages, RevTe

    Higher spin AdS_3 holography with extended supersymmetry

    Get PDF
    We propose a holographic duality between a higher spin AdS_3 gravity with so(p) extended supersymmetry and a large N limit of a 2-dimensional Grassmannian-like model with a specific critical level k=N and a non-diagonal modular invariant. As evidence, we show the match of one-loop partition functions. Moreover, we construct symmetry generators of the coset model for low spins which are dual to gauge fields in the supergravity. Further, we discuss a possible relation to superstring theory by noticing an N=3 supersymmetry of critical level model at finite k,N. In particular, we examine BPS states and marginal deformations. Inspired by the supergravity side, we also propose and test another large N CFT dual obtained as a Z_2 automorphism truncation of a similar coset model, but at a non-critical level.Comment: 44 pages, published versio

    Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case

    Get PDF
    Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new approach. The usage of machine learning methods, however is still far from trivial and many problems still need to be solved. Using the evaluation of photometric redshifts as a case study, we outline the main problems and some ongoing efforts to solve them.Comment: 13 pages, 3 figures, Springer's Communications in Computer and Information Science (CCIS), Vol. 82
    corecore