899 research outputs found

    Visibility and potential of solar energy on horizontal surface at Kuwait Area

    Get PDF
    In this paper, an overview of the production and consumption of Kuwait electrical energy, installed capacity and peak loads are presented. The results show that Kuwait has a serious situation because of the electrical energy lacking and load peaking. Based on the fact that Kuwait has enough budgets to transform all the power station powered by oil with renewable energy sources turning to greener Kuwait. The paper also is identifying and analyzing the geographical and temporal variability of solar energy inside Kuwait. The fundamental solar models are modified to estimate and identify daily and hourly solar radiation on horizontal surfaces on the basis of the more readily available meteorological data. The presented results prove that Kuwait has an abundance of solar energy capability in terms of almost cloudless atmosphere for nine months and twelve hours solar time a day over the year. The daily global and monthly averaged solar intensity on horizontal surface at Kuwait area is ranging from 3 Wh/m2 in winter to 8 kWh/m2 in summer. Monthly averaged clear sky solar radiation on horizontal surfaces at Kuwait area is ranging from 500 W/m2/day to 1042 W/m2/day

    Forward facing flap for delta wing performance improvement

    Get PDF
    Abstract: In the present study, the concept of forward facing flap mounted on a slender delta wing, originally proposed by Hurley is considered. The test model resulted in surfaces that deflected from the basic delta to form a simple X-configuration. With this configuration, force balance measurements were conducted at low speed in a low speed open circuit wind tunnel. The lift produced was found to be dependent on both the flap deflection angle and thickness. Overall, the results obtained are very promising as they show definitive trends in the lift performance improvement of the X-configuration over conventional base delta wing at low angles of attack

    Wind Driven Ventilation for Enhanced Indoor Air Quality

    Get PDF

    The relationship between physical activity level and obesity among medical students at International University of Africa, Sudan

    Get PDF
    Background: Obesity is a leading preventable cause of death worldwide, with increasing rates in adults and children . Several studies had investigated the relationship between physical activity and obesity but this relationship is still controversial and few attempts were made to study this relationship among medical students especially in Sudan. Therefore, the aim of this study was to determine the relationship between physical activity level and obesity among the medical students of the International University of Africa.Methods: This was cross section descriptive facility- based study conducted among 200 medical students at International University of Africa (IUA) selected by stratified random sampling. Data were collected by self-administered questionnaire which included sociodemographic data. Anthropometric measurements were done for each participant. Physical activity level was determined by the short form of the international physical activity questionnaire (SF-IPAQ). Data were analyzed using SPSS version 23 program. Descriptive data were presented as means and standard deviations of means or percentages. Correlation analysis and Chi-Square test were used to assess associations/ differences between different variables. P<0.05 was considered statistically significantResults: The mean age of participants was 21.76±2.48 years. The prevalence of obesity among students was 6.5% and most of the students had either low or moderate physical activity level (24.5% and 48.5% respectively). Male students had higher level of physical activity than female students (P<0.001). There was no significant relationship between physical activity level and obesity in both male and female students.Conclusion: The study revealed insignificant relationship between obesity and physical activity level.Keywords: Obesity, physical activity, medical students, Sudanes

    A Study of Adjustment Level among Secondary School Teachers in Kashmir

    Get PDF
    Education is great meat to brought social change. A teacher has crucial role in imparting education. The quality of good professionally competent teachers depends on some factor where the degree of level of adjustment presents in the school environment. The present study is carried out in Government Secondary Schools of district pulwama and district Srinagar of Kashmir Division to know the gender, demographical and educational impact on teacher’s adjustment behaviour. In this study it has been observed that there is significant difference between male, Female and Rural, Urban Secondary School Teachers. Sample for the study Consists of (200) Secondary School Teachers in which (100) from rural Area and (100) from urban area. Adjustment of Secondary school Teachers was measured by Bell’s Adjustment inventory. Keywords: adjustment, Kashmir, Social change, Behaviou

    Production of Neutralinos as Adark Matter via Z0 Boson Propagator

    Get PDF
    The cross-section, in electron (e-) positron (e+) collision, are calculated over range of center of mass energy S  for the process.Please find more in the PDF version

    CROSS-SECTIONS CALCULATION FOR THE PROCESS e-(P1)+ e+(P2)-> H- i(P2)+ H- j(P14)+ X0i(P5)

    Get PDF
    The cross-sections (?), in electron (e-) positron (e+) collision, is calculated over range of center of mass energy(s) for the process: 12 e-P1+e+P3. Please find more detail in the PDF full content.Keywords: Higgs bosons; neutralinos.

    A novel suture button construct for acute ankle syndesmotic injuries; A prospective clinical and radiological analysis

    Get PDF
    Background: The importance of the syndesmosis in ankle stability is well recognized. Numerous means of fixation have been described for syndesmotic injuries including the suture button technique. Significant cost limits the use the commercially available options. We, therefore, designed a cheap and readily available alternative construct. We aim to assess the results of using a novel suture-button construct in treatment of syndesmotic ankle injuries. Methods: Fifty-two patients (34 males and 18 females) fulfilled our inclusion/exclusion criteria. Five patients were lost to follow-up. The remaining 47 patients were successfully followed up for a minimum of 24 months. The pre and post-surgery American Orthopedic Foot and Ankle Society scores (AOFAS) together with reported complications and post-operative radiological analysis were assessed. In this innovative construct, we utilized polyester braided surgical sutures jointly with double mini two- holed plates, a No.2 polygalactin 910 suture, a 4 mm drill bit, together with a 15 cm long suture needle with slotted end. This technique was supported with the use of the image intensifier. Results: The AOFAS score improved significantly from a mean of 32.4 to 94.2 (P < 0.004). Radiologically, the medial clear space (MCS), tibio-fibular clear space (TFCS) (P=0.05) and tibio-fibular overlap (TFO) measurements showed a significant improvement postoperatively (P=0.02). Patients reported good satisfaction rates with a 96% success rate (95% CI: 94.0% to 99.3%). Conclusion: We have observed that this low cost suture button construct is a simple, safe and cost effective treatment option for acute syndesmotic injuries

    Immunoregulatory Properties of Break Down Products of Human Choriogonadotropin

    Get PDF
    Reproductive function in the female is cyclic. A series of functional interrelationships between the hypothalamus, the anterior pituitary, and the ovaries leads to the monthly rupture of an ovarian follicle and extrusion of an egg (“ovulation”), which is then transported to the fallopian tubes to be fertilized. Should fertilization fail to occur, menstruation ensues within 14 days and the hormonal and morphological events that led to ovulation are repeated. Ovulation occurs around day 14 of the menstrual cycle, followed by fertilization as egg and sperm unite within 24 hours. The first three days of development occur within the fallopian tube. Upon arrival within the uterus the conceptus develops into a blastocyst (Figure 1) and begins to make mRNA for human chorionic gonadotropin (hCG), the first hormone signal from the early embryo. By day 6 after fertilization the blastocyst initiates implantation into the maternal endometrium or uterine lining. Within a few days of fertilization the blastocyst becomes a spherical structure composed of two layers. The outside layer of cells become trophoblasts and the inside of a group of cells called the inner cell mass (Figure 2A) will develop into the fetus and ultimately the baby. In addition to making hCG, the trophoblasts mediate the implantation process by attaching to, and eventually invading into the endometrium (Figure 2B). Once firmly attached to the endometrium the developing conceptus grows and continues to expand into the endometrium. One of the basic paradigms which is established even within the first week of gestation is that the embryonic/fetal cells are always separated from maternal tissues and blood by a layer of cytotrophoblasts (mononuclear trophoblasts) and syncytiotrophoblasts (multinucleated trophoblasts) (Figure 2C-F). This is critical not only for nutrient exchange, but also to protect the developing fetus from maternal immunologic attack (1). Implantation is regulated by a complex interplay between trophoblasts and endometrium. On the one hand trophoblasts have a potent invasive capacity and if allowed to invade unchecked, spread throughout the uterus. The endometrium, on the other hand, controls trophoblast invasion by secreting locally acting factors (i.e. cytokines and protease inhibitors), which modulate trophoblast invasion. Within the placenta the syncytiotrophoblasts generate high levels of hCG which modulates cytotrophoblast differentiation towards a non-invasive hormone secreting villous-type trophoblast. The closer the trophoblasts are to the endometrium the less hCG is made, allowing the trophoblasts to differentiate into anchoring type cells (2). Trophoblasts that leave the placenta and migrate within the endo and myometrium are induced to make proteases and protease inhibitors, to further facilitate trophoblast invasion into the maternal tissues (2). Ultimately, normal implantation and placentation is a balance between regulatory gradients created by both the trophoblasts and the endometrium

    Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis

    Full text link
    [EN] Mitochondrial DNA (mtDNA) and cytochrome b (cyt b) gene sequences were used to determine the status of genetic diversity and phylogeny for 132 individuals from local rabbit breeds in Egypt and Spain. The Egyptian local rabbit breeds were Egyptian Red Baladi (ERB), Egyptian Black Baladi (EBB) and Egyptian Gabali Sinai (EGS). However, the Spanish local rabbit breed was Spanish common rabbit (SCR). Previous breeds were compared with European Wild Rabbit taken from Albacete, Spain (EWR). A total of 353 mutations, 290 polymorphic sites, 14 haplotypes, 0.06126 haplotype diversity and –1.900 (P&lt;0.05) for Tajima’s D were defined in this study. Haplotype A mostly occurred in 83.3% of Egyptian rabbits and 11.7 % of EWR, while haplotype B occurred in 63.8% of Spanish rabbits and 36.2% of the EGS breed. A total of 47 domestic and wild Oryctolagus cuniculus published sequences were used to investigate the origin and relation among the rabbit breeds tested in this study. The most common haplotype (A) was combined with 44.7% of published sequences. However, haplotype B was combined with 8.5%. Haplotypes of Egyptian, SCR and EWR were scattered in cluster 1, while we found only one EGS haplotype with two haplotypes of EWR in cluster 2. Our results assumed that genetic diversity for ERB, EBB and SCR was very low. Egyptian breeds and SCR were introduced from European rabbits. We found that ERB and EBB belong to one breed.Emam, AM.; Afonso, S.; González-Redondo, P.; Mehaisen, G.; Azoz, A.; Ahmed, N.; Fernand, N. (2020). Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis. World Rabbit Science. 28(2):93-102. https://doi.org/10.4995/wrs.2020.12219OJS93102282Abrantes J., Areal H., Esteves P.J. 2013. Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: genetic diversity of the toll-like receptor 3(TLR3) in wild populations and domestic breeds. BMC Genet., 14: 73. https://doi.org/10.1186/1471-2156-14-73Achilli A., Olivieri A., Pellecchia M., Uboldi C., Colli L., Al-Zahery N., Accetturo M., Pala M., Kashani B.H., Perego U.A., Battaglia V., Fornarino S., Kalamati J., Houshmand M., Negrini R., Semino O., Richards M., Macaulay V., Ferretti L., Bandelt H.J., Ajmone-Marsan P., Torroni A. 2008. Mitochondrial genomes of extinct aurochs survive in domestic cattle. Curr. Biol., 18: R157-R158. https://doi.org/10.1016/j.cub.2008.01.019Alves J.M., Carneiro, M., Afonso S., Lopes S., Garreau H., Boucher S., Allian D., Queney G., Esteves P.J., Bolet J. and Ferrnand N. 2015. Levels and patterns of genetic diversity and population structure in domestic rabbits. PLoS One 10 (12): e0144687. https://doi.org/10.1371/journal.pone.0144687Bolet G., Brun J.M., Monnerot M., Abeni F., Arnal C., Arnold J., Bell D., Bergoglio G., Besenfelder U., Bosze S., Boucher S., Chanteloup N., Ducourouble M.C., Durand-Tardif M., Esteves P.J., Ferrand N., Gautier A., Haas C., Hewitt G., Jehl N., Joly T., Koehl P.F., Laube T., Lechevestrier S., Lopez M., Masoero G., Menigoz J.J., Piccinin R., Queney G., Saleil G., Surridge A., Van Der Loo W., Vicente J.S., Viudes De Castro M.P., Virag G., Zimmermann, J.M. 2000. Evaluation and conservation of European rabbit (Oryctolagus cuniculus) genetic resources. First results and inferences. In Proc.: 7th World Rabbit Congress, 4-7 July 2000, Valencia, Spain, pp. 281-315.Bollback J.P., Huelsenbeck J.P. 2007. Clonal interference is alleviated by high mutation rates in large populations. Mol. Biol. Evol., 24: 1397-1406. https://doi.org/10.1093/molbev/msm056Bortoluzzi C., Bosse M., Derks M.F.L., Crooijmans R., Groenen M.A.M, Megens H.J. 2019. The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evol Appl., 13: 330-341. https://doi.org/10.1111/eva.12872.Brook B.W. 2008. Demographics versus genetics in conservation biology. In: Carrol, S.P. and Fox, C.W. (eds). Conservation Biology: Evolution in Action. Oxford University Press: USA. 35-49.Campos, R., Storz, J.F., Ferrand, N. 2012. Copy number polymorphism in the α-globin gene cluster of European rabbit (Oryctolagus cuniculus). Heredity, 108: 531-536. https://doi.org/10.1038/hdy.2011.118Carneiro M., Afonso S., Geraldes A., Garreau H., Bolet G., Boucher S., Tircazes A., Queney G., Nachman M.W., Ferrand N. 2011. The genetic structure of domestic rabbits. Mol. Biol. Evol., 28: 1801-1816. https://doi.org/10.1093/molbev/msr003Carneiro M., Albert F.W., Melo-Ferreira J., Galtier N., Gayral P., Blanco-Aguiar J.A., Villafuerte R., Nachman N.M., Ferrand N. 2012. Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome. Mol. Biol. Evol., 29: 1837-1849. https://doi.org/10.1093/molbev/mss025Christensen N.D., Peng X. 2012. Rabbit genetic and transgenic model. In: The Laboratory Rabbit, Guinea pig, Hamster and other Rodents (Eds. Suckow, M.A., Stevens, K.A. and Wilson, R.P). Elsevier, USA, pp. 165-194. https://doi.org/10.1016/B978-0-12-380920-9.00007-9Christodoulakis M., Golding G.B., Iliopoulos C.S., Pinzón Ardila Y.J., Smyth W.F. 2007. Efficient algorithms for counting and reporting segregating sites in genomic sequences. J. Comput. Biol., 14: 1001-1010. https://doi.org/10.1089/cmb.2006.0136Emam A.M., Afonso, S., Azoz, A., Mehaisen, G.M.K., Gonzalez, P.; Ahmed, N.A., Ferrnand N. 2016. Microsatellite polymorphism in some Egyptian and Spanish common rabbit breeds. In Proc.: 11th World Rabbit Congress, 15-18 June 2016, Qingdao, China. pp: 31-34.Emam A.M., Azoz A., Mehaisen G.M.K., Ferrnand N., Ahmed N.A. 2017. Diversity assessment among native middle Egypt rabbit populations in North upper- Egypt province by microsatellite polymorphism. World Rabbit Sci., 25: 9-16. https://doi.org/10.4995/wrs.2017.5298Ennafaa H., Monnerot M., Gaaied A.E., Mounolou J.C. 1987. Rabbit mitochondrial DNA: preliminary comparison between some domestic and wild animals. Genet. Select. Evol.,19:279-288. https://doi.org/10.1186/1297-9686-19-3-279FAO. 2007. Global plan of action for animal genetic resources and the Interlaken declaration. Available at http://www.fao.org/docrep/010/a1404e/a1404e00.htm. Accessed August 2019.FAO. 2011. Animal production and health guidelines (9), Molecular genetic characterization of animal genetic resources, Commission on genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations. Rome.Fu Y.X., Li W.H. 1993. Statistical tests of neutrality of mutations. Genetics,133: 693-709.Fuller S.J., Wilson, J.C., Mather P.B. 1997. Patterns of differentiation among wild rabbit populations Oryctolagus Cuniculus L. in arid and semiarid ecosystems of North-Eastern Australia. Mol. Eco., 6: 145-153. https://doi.org/10.1046/j.1365-294X.1997.00167.xGaggiotti O.E. 2003. Genetic threats to population persistence. Ann. Zool. Fennici, 40: 155-168. Galal E.S.E., Khalil M.H. 1994. Development of rabbit industry in Egypt. Cahiers Options Méditerranéennes, 8: 43-56.Geraldes A., Ferrand N., Nachman M.W. 2006. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics, 173, 919-933. https://doi.org/10.1534/genetics.105.054106Ghalayini M, Launay A, BridierNahmias A, Clermont O, Denamur E, Lescat M, Tenaillon O. 2018. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl. Environ. Microbiol., 84: e02377-17. https://doi.org/10.1128/AEM.02377-17González-Redondo P. 2007. Estado de las poblaciones y posibilidades de recuperación del conejo doméstico común Español. In Proc.: IV Jornadas Ibéricas de Razas Autóctonas y sus Productos Tradicionales: Innovación, Seguridad y Cultura Alimentarias. Seville (Spain), pp. 367-372.Grimal A., Safaa H.M., Saenz-de-Juano M.D., Viudes-de-Castro M.P., Mehaisen G.M.K., Elsayed D.A.A., Lavara R., Marco Jiménez F., Vicente J.S. 2012. Phylogenetic relationship among four Egyptian and one Spanish rabbit populations based on microsatellite markers. In Proc.: 10th World Rabbit Congress, 3-6 September, 2012, Sharm El-Sheikh, Egypt, pp. 177-181.Guo H., Jiao Y., Tan X., Wang X., Huang X., Huizhe X., Jin H. and. Paterson, A.H. 2019. Gene duplication and genetic innovation in cereal genomes. Genome Res. 29: 261-269. https://doi.org/10.1101/gr.237511.118Guo H., Jiao Y., Tan X., Wang X., Huang X., Jin H., Paterson A.H. Gene duplication and genetic innovation in cereal genomes. Genome Res., 29: 261-269.Gupta A., Bhardwaj A., Supriya, Sharma P., Pal Y., Kumar S. 2015. Mitochondrial DNA- a Tool for Phylogenetic and Biodiversity Search in Equines. J. Biodivers Endanger Species, S1: 006. https://doi.org/10.4172/2332-2543.S1-006Hall S.J.G. 2004. Livestock biodiversity: genetic resources for the farming of the future. Blackwell Science Ltd. Oxford, United Kingdom. 280 pp. https://doi.org/10.1002/9780470995433Jayaraman R. 2011. Hypermutation and stress adaptation in bacteria. J. Genet., 90: 383-391. https://doi.org/10.1007/s12041-011-0086-6Kekkonen J., Brommer J.E. 2014. Reducing the loss of genetic diversity associated with assisted colonization-like introductions of animals. Available at http://www.currentzoology.org/site_media/onlinefirst/downloadable_file/2014/12/01/Kekkonen.pdf. Accessed January 2015.Khalil M.H. 2002. The Baladi Rabbits (Egypt). In: Rabbit genetic resources in Mediterranean Countries. Eds. M. H. Khalil and M. Baselga. Options Mediterranéennes Serie B, 38: 39-50.Kim J.H., Byun M.J., Kim M.J., Suh S.W., Ko Y.G., Lee C.W., Jung K.S., Kim E.S., Yu D.J., Kim W.Y., Choi S.B. 2013. MtDNA diversity and phylogenetic state of Korean cattle breed, Chikso. Asian-Australas. J. Anim. Sci., 26: 163-170. https://doi.org/10.5713/ajas.2012.12499Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187Long J.R., Qiu X.P., Zeng F.T., Tang L.M., Zhang Y.P. 2003. Origin of rabbit (Oryctolagus cuniculus) in China: evidence from mitochondrial DNA control region sequence analysis. Anim. Genet., 34: 82-87. https://doi.org/10.1046/j.1365-2052.2003.00945.xMartin-Burriel, I., Marcos, S., Osta R., García-Muro, E., Zaragoza, P. 1996. Genetic characteristics and distances amongst Spanish and French rabbit population. World Rabbit Sci., 4: 121-126. https://doi.org/10.4995/wrs.1996.282Ministry of Agriculture and Land Reclamation in Egypt, FAO (2003). First Report on the state of animal Genetic Resources in the Arab Republic of Egypt. FAO, Rome, pp. 23.Monnerot M., Vigne J.D., Biju-Duval C., Casane D., Callou C., Hardy C., Mougel F., Soriguer R., Dennebouy N., Mounolou J. (1994) Rabbit and man: genetic and historic approach. Genet. Select. Evol., 26: 167s-182s. https://doi.org/10.1186/1297-9686-26-S1-S167Mougel F., Gautier A, Queney G., Sanchez M., Dennebouy N., Monnerot M. 2002. History of European rabbit populations in France: advantage and disadvantage of mtDNA. Available at https://www.ncbi.nlm.nih.gov/nuccore/AJ535802 Accessed August 2019.Nguyen N., Brajkovic V., Cubric-Curik V., Ristov S., Veir Z., Szendrő Z., Nagy I., Curik, I. 2018. Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits. World Rabbit Science, 26: 287-298. https://doi.org/10.4995/wrs.2018.7644Owuor S.A., Mamati E.G., Kasili R.W. 2019. Origin, Genetic Diversity, and Population Structure of Rabbits (Oryctolagus cuniculus) in Kenya. BioMed. Res. Internat., 2019: 7056940. https://doi.org/10.1155/2019/7056940Park G., Pichugin Y., Huang W., Traulsen A. 2019. Population size changes and extinction risk of populations driven by mutant interactors. Phys. Rev., E 99, 022305. https://doi.org/10.1103/PhysRevE.99.022305Peischl S., Excoffier L. 2015. Expansion load: recessive mutations and the role of standing genetic variation. Mol. Ecol., 24: 2084-2094. https://doi.org/10.1111/mec.13154Sakthivel M., Tamilmani G., Abdul Nazar A.K., Jayakumar R., Sankar M., Rameshkumar P., Anikuttan K.K., Samal A.K., Anbarasu M., Gopakumar G. 2018. Genetic variability of a small captive population of the cobia (Rachycentron canadum) through pedigree analyses. Aquaculture, 498: 435-443. https://doi.org/10.1016/j.aquaculture.2018.08.047Schmidt D., Pool J. 2002. The effect of population history on the distribution of Tajima's D statistics. Available at http://www.cam.cornell.edu/~deena/TajimasD.pdf. Accessed March 2019.Schumer M., Xu C., Powell D.L., Durvasula A., Skov L., Holland C., Blazier J.C., Sankararaman S., Andolfatto P., Rosenthal G.G., Przeworski M. 2018. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science, 360: 656-660 https://doi.org/10.1126/science.aar3684Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol., 30: 2725-2729. https://doi.org/10.1093/molbev/mst197Valvo M., Russo R., Mancuso F.P. 2017. mtDNA diversity in a rabbit population from Sicily (Italy). Turk. J. Zool. 41: 645-653. https://doi.org/10.3906/zoo-1511-53van der Loo W., Mougel F., Sanchez M.S., Bouton C., Castien E., Soriguer R., Hamers R., Monnerot M. 1997. Evolutionary patterns at the antibody constant region in rabbit (Oryctolagus cuniculus): characterization of endemic b-locus haplotypes and their frequency correlation with major mitochondrial gene types in Spain. Gibier Faune Sauvage, 14: 427-449.Wares J.P. 2010. Natural distributions of mitochondrial sequence diversity support new null hypotheses. Evolution 64: 1136-1142. https://doi.org/10.1111/j.1558-5646.2009.00870.xWatson J.P.N., Davis S.J.M. 2019. Shape differences in the pelvis of the rabbit, Oryctolagus cuniculus (L.), and their genetic associations. Available at https://hal.archives-ouvertes.fr/hal-01918838v2 Accessed March 2019.Yu Yeh S., Hsuan Song C., Llu-lin T., Chung Chou C. 2019. The effects of crossbreeding, age, and sex on erythrocyte indices and biochemical variables in crossbred pet rabbits (Oryctolagus cuniculus). Vet. Clin. Pathol., 48: 469-480. https://doi.org/10.1111/vcp.12775Zaragoza P., Arana A., Zaragoza I., Amorena B. 1987. Blood biochemical polymorphisms in rabbits presently bred in Spain: Genetic variation and distances amongst populations. Aust. J. Biol. Sci., 40: 275-286. https://doi.org/10.1071/BI987027
    • …
    corecore