42 research outputs found
Bibliometric Profiling of a Group: A Discussion on Different Indicators
Abstract.Now-a-days in some advanced countries bibliometric profiling plays a vital role when making decision on promotion, fund allocation and award prizes. Accurate identification of this is important since it is becoming important to assess scientific output for a researcher or a group of researcher. This paper presents and discusses several most common indicators of bibliometric profiling together with h-and g-indexes. A case study has been conducted on 101 scientific articles with three most well known search engines. The study results using several indicators are presented in this report
Extended data for a study on human subjects related to Simusafe
This project contains the following extended data:
- Information sheet
- Consent forms
- Questionnair
A case-based multi-modal clinical system for stress management
A difficult issue in stress management is to use biomedical sensor signal in the diagnosis and treatment of stress. Clinicians often make their diagnosis and decision based on manual inspection of physiological signals such as, ECG, heart rate, finger temperature etc. However, the complexity associated with manual analysis and interpretation of the signals makes it difficult even for experienced clinicians. Today the diagnosis and decision is largely dependent on how experienced the clinician is interpreting the measurements. A computer-aided decision support system for diagnosis and treatment of stress would enable a more objective and consistent diagnosis and decisions. A challenge in the field of medicine is the accuracy of the system, it is essential that the clinician is able to judge the accuracy of the suggested solutions. Case-based reasoning systems for medical applications are increasingly multi-purpose and multi-modal, using a variety of different methods and techniques to meet the challenges of the medical domain. This research work covers the development of an intelligent clinical decision support system for diagnosis, classification and treatment in stress management. The system uses a finger temperature sensor and the variation in the finger temperature is one of the key features in the system. Several artificial intelligence techniques have been investigated to enable a more reliable and efficient diagnosis and treatment of stress such as case-based reasoning, textual information retrieval, rule-based reasoning, and fuzzy logic. Functionalities and the performance of the system have been validated by implementing a research prototype based on close collaboration with an expert in stress. The case base of the implemented system has been initiated with 53 reference cases classified by an experienced clinician. A case study also shows that the system provides results close to a human expert. The experimental results suggest that such a system is valuable both for less experienced clinicians and for experts where the system may function as a second option.IPOS, PROE
Mobyen Uddin Ahmed's Quick Files
The Quick Files feature was discontinued and it’s files were migrated into this Project on March 11, 2022. The file URL’s will still resolve properly, and the Quick Files logs are available in the Project’s Recent Activity
A Multimodal Approach for Clinical Diagnosis and Treatment
A computer-aided Clinical Decision Support System (CDSS) for diagnosis and treatment often plays a vital role and brings essential benefits for clinicians. Such a CDSS could function as an expert for a less experienced clinician or as a second option/opinion of an experienced clinician to their decision making task. Nevertheless, it has been a real challenge to design and develop such a functional system where accuracy of the system performance is an important issue. This research work focuses on development of intelligent CDSS based on a multimodal approach for diagnosis, classification and treatment in medical domains i.e. stress and post-operative pain management domains. Several Artificial Intelligence (AI) techniques such as Case-Based Reasoning (CBR), textual Information Retrieval (IR), Rule-Based Reasoning (RBR), Fuzzy Logic and clustering approaches have been investigated in this thesis work. Patient’s data i.e. their stress and pain related information are collected from complex data sources for instance, finger temperature measurements through sensor signals, pain measurements using a Numerical Visual Analogue Scale (NVAS), patient’s information from text and multiple choice questionnaires. The proposed approach considers multimedia data management to be able to use them in CDSSs for both the domains. The functionalities and performance of the systems have been evaluated based on close collaboration with experts and clinicians of the domains. In stress management, 68 measurements from 46 subjects and 1572 patients’ cases out of ≈4000 in post-operative pain have been used to design, develop and validate the systems. In the stress management domain, besides the 68 measurement cases, three trainees and one senior clinician also have been involved in order to conduct the experimental work. The result from the evaluation shows that the system reaches a level of performance close to the expert and better than the senior and trainee clinicians. Thus, the proposed CDSS could be used as an expert for a less experienced clinician (i.e. trainee) or as a second option/opinion for an experienced clinician (i.e. senior) to their decision making process in stress management. In post-operative pain treatment, the CDSS retrieves and presents most similar cases (e.g. both rare and regular) with their outcomes to assist physicians. Moreover, an automatic approach is presented in order to identify rare cases and 18% of cases from the whole cases library i.e. 276 out of 1572 are identified as rare cases by the approach. Again, among the rare cases (i.e. 276), around 57.25% of the cases are classified as ‘unusually bad’ i.e. the average pain outcome value is greater or equal to 5 on the NVAS scale 0 to 10. Identification of rear cases is an important part of the PAIN OUT project and can be used to improve the quality of individual pain treatment
Physical activity identification using supervised machine learning and based on pulse rate
Physical activity is one of the key components for elderly in order to be actively ageing. Pulse rate is a convenient physiological parameter to identify elderly’s physical activity since it increases with activity and decreases with rest. However, analysis and classification of pulse rate is often difficult due to personal variation during activity. This paper proposed a Case-Based Reasoning (CBR) approach to identify physical activity of elderly based on pulse rate. The proposed CBR approach has been compared with the two popular classification techniques, i.e. Support Vector Machine (SVM) and Neural Network (NN). The comparison has been conducted through an empirical experimental study where three experiments with 192 pulse rate measurement data are used. The experiment result shows that the proposed CBR approach outperforms the other two methods. Finally, the CBR approach identifies physical activity of elderly 84% accurately based on pulse rateSAAPHO, Remot
Mining Rare Cases in Post-Operative Pain by Means of Outlier Detection
Rare cases are often interesting for healthprofessionals, physicians, researchers and clinicians in order toreuse and disseminate experiences in healthcare. However,mining, i.e. identification of rare cases in electronic patientrecords, is non-trivial for information technology. This paperinvestigates a number of well-known clustering algorithms andfinally applies a 2nd order clustering approach by combining theFuzzy C-means algorithm with the Hierarchical one. Theapproach is used in order to identify rare cases from 1572patient cases in the domain of post-operative pain management.The results show that the approach enables identification of rarecases in the domain of post-operative pain management and 18%of cases are identified as rare case.Submitted to: IEEE International Symposium on Signal Processing and Information Technology, 2011PainOu
A Hybrid Case-Based System in Stress Diagnosis and Treatment
Computer-aided decision support systems play anincreasingly important role in clinical diagnosis and treatment.However, they are difficult to build for domains where thedomain theory is weak and where different experts differ indiagnosis. Stress diagnosis and treatment is an example of such adomain. This paper explores several artificial intelligencemethods and techniques and in particular case-based reasoning,textual information retrieval, rule-based reasoning, and fuzzylogic to enable a more reliable diagnosis and treatment of stress.The proposed hybrid case-based approach has been validated byimplementing a prototype in close collaboration with leadingexperts in stress diagnosis. The obtained sensitivity, specificityand overall accuracy compared to an expert are 92%, 86% and88% respectively.Submitted to: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI2012)IModNovaMedTec