182 research outputs found

    On the Irreversibility of Electrostatic Plasma Turbulence

    Get PDF

    Passive Vibration Control of Airborne Equipment using a Circular Steel Ring

    Get PDF
    Vibration isolation is needed to protect avionics equipment from adverse aircraft vibration environments. Passive isolation is the simplest means to achieve this goal. The system used here consists of a circular steel ring with a lump mass on top and exposed to base excitation. Sinusoidal and filtered zero-mean Gaussian white noise are used to excite the structure and the acceleration response spectra at the top of the ring are computed. An experiment is performed to identify the natural frequencies and modal damping of the circular ring. Comparison is made between the analytical and experimental results and good agreement is observed. The ring response is also evaluated with a concentrated mass attached to the top of the ring. The effectiveness of the ring in isolating the equipment from base excitation is studied. The acceleration response spectra of a single degree of freedom system attached to the top of the ring are evaluated and the results are compared with those exposed directly to the base excitation. It is shown that a properly designed ring could effectively protect the avionics from possible damaging excitation levels

    Nano-particle deposition in the presence of electric field

    Get PDF
    The dispersion and deposition of nano-particles in laminar flows in the presence of an electric field were studied. The Eulerian-Lagrangian particle tracking method was used to simulate nano-particle motions under the one-way coupling assumption. For nano-particles in the size range of 5–200 nm, in addition to the Brownian excitation, the electrostatic and gravitational forces were included in the analysis. Different charging mechanisms including field and diffusion charging as well as the Boltzmann charge distributions were investigated. The simulation methodology was first validated for Brownian and electrostatic forces. For the combined field and diffusion charging, the simulation results showed that in the presence of an electric field of 10 kV/m, the electrostatic force dominates the Brownian effects. However, when the electric field was 1 kV/m, the Brownian motion strongly affected the particle dispersion and deposition processes. For the electric field intensity of 1 kV/m, for 10 nm and 100 nm particles, the deposition efficiencies for the combined effects of electrostatic and Brownian motion were, respectively, about 27% and 161.2% higher than the case in the absence of electric field. Furthermore, particles with the Boltzmann charge distribution had the maximum deposition for 20 nm particles

    Experimental Investigation on a 3D Wing Section Hosting Multiple SJAs for Stall Control Purpose

    Get PDF
    Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement. A dSPACE™ hardware connected to the software environment Matlab/Simulink® and dSPACE Control-Desk® complete the test architecture. Wind tunnel experiments, on the uncontrolled wing (actuators off), are primarily performed for system identification purpose. The open-loop control operation (actuators on but no feedback) of the wing is implemented and tested, obtaining a stall delay of about 2.8 degrees of AOA. Furthermore, a closed-loop strategy, based on the wing upper surface mean pressure chord-wise distributions signature is adopted to characterize the forthcoming boundary layer detachment. This allows for triggering the controller in stall proximity only, for energy saving purpose. Pertinent results and discussion are provided along with concluding remarks and prospects for future research

    CFD modeling and simulation of PEM fuel cell using OpenFOAM

    Get PDF
    A proton exchange membrane (PEM) fuel cell is an electrolytic cell that converts chemical energy of hydrogen reacting with oxygen into electrical energy. To meet increasingly stringent application needs, improved performance and increased efficiency are paramount. Computational fluid dynamics (CFD) is an ideal means for achieving these improvements. In this paper, a comprehensive CFD-based tool that can accurately simulate the major transport phenomena which take place within a PEM fuel cell is presented. The tool is developed using OpenFOAM and it can be used to rapidly gain insights into the cell working processes. The base case results are compared with previous model results and experimental data. The present I-V curve shows better agreement with the experimental trend at low current densities. The simulation data also indicate that the chosen concentration constant has very significant impact on the concentration overpotential

    Three-dimensional multiphase flow computational fluid dynamics models for proton exchange membrane fuel cell: a theoretical development

    Get PDF
    A review of published three-dimensional, computational fluid dynamics models for proton exchange membrane fuel cells that accounts for multiphase flow is presented. The models can be categorized as models for transport phenomena, geometry or operating condition effects, and thermal effects. The influences of heat and water management on the fuel cell performance have been repeatedly addressed, and these still remain two central issues in proton exchange membrane fuel cell technology. The strengths and weaknesses of the models, the modelling assumptions, and the model validation are discussed. The salient numerical features of the models are examined, and an overview of the most commonly used computational fluid dynamic codes for the numerical modelling of proton exchange membrane fuel cells is given. Comprehensive three-dimensional multiphase flow computational fluid dynamic models accounting for the major transport phenomena inside a complete cell have been developed. However, it has been noted that more research is required to develop models that include among other things, the detailed composition and structure of the catalyst layers, the effects of water droplets movement in the gas flow channels, the consideration of phase change in both the anode and the cathode sides of the fuel cell, and dissolved water transport
    corecore