7 research outputs found

    An Optimized Combination of a Large Grid Connected PV System along with Battery Cells and a Diesel Generator

    Get PDF
    Environmental, economical and technical benefits of photovoltaic (PV) systems make them to be used in many countries. The main characteristic of PV systems is the fluctuations of their output power. Hence, high penetration of PV systems into electric network could be detrimental to overall system performance. Furthermore, the fluctuations in the output power of PV systems make it difficult to predict their output, and to consider them in generation planning of the units. The main objective of this paper is to propose a hybrid method which can be used to control and reduce the power fluctuations generated from large grid- connected PV systems. The proposed method focuses on using a suitable storage battery along with curtailment of the generated power by operating the PV system below the maximum power point (MPP) and deployment of a diesel generator. These methods are analyzed to investigate the impacts of implementing them on the economical benefits that the PV system owner could gain. To maximize the revenues, an optimization problem is solved

    Interval optimization‐based scheduling of interlinked power, gas, heat, and hydrogen systems

    Get PDF
    The combined heat and power (CHP) plant is one of the emerging technologies of gas‐fired units, which plays an important role in reducing environmental pollutants and delivering high energy efficiency. Moreover, the hydrogen energy storage (HES) system with extra power storage from wind turbine via power to hydrogen technology allows the injection of stored energy into the power grid by reverse hydrogen to power services, offsetting in this way the uncertainty of wind power. Consequently, simultaneous usage of CHP and HES units not only makes the maximum use of wind power distribution but also increases flexibility and reduces the operating costs of the entire network. Therefore, this paper proposes an interval optimization technique for managing the uncertainty of wind power generation in the integrated electricity and natural gas (NG) networks considering CHP–HES. Moreover, to enhance the flexibility of the NG network, a linearized Taylor series‐based model is proposed for modelling linepack of gas pipelines in the proposed scheduling framework that is formulated mixed‐integer linear programming and solved using the Cplex solver. The obtained results indicate that the simultaneous use of CHP–HES in the day‐ahead scheduling reduces the operating cost and increases the flexibility of the whole network

    A Bi-level Market-Clearing for Coordinated Regional-Local Multi-Carrier Systems in Presence of Energy Storage Technologies

    Get PDF
    A multi-energy system (MES) provides greater flexibility for the operation of different energy carriers. It increases the reliability and efficiency of the networks in the presence of renewable energy sources (RESs). Various energy carriers such as power, gas, and heat can be interconnected by energy storage systems (ESSs) and combined heat and power units at different levels (e.g., within a region or a local). Non-coordinated optimization of energy systems at local and regional levels does not verify the whole optimal operation of systems since the systems are operated without considering their interactions with each other. One of the most famous sources of flexibility is ESSs. Hence, this paper presents a stochastic decentralized approach to evaluate the impact of ESSs on regional-local MES market-clearing within a bi-level framework. On the regional level, the economic interaction between the electricity and natural gas (NG) systems is carried out by a centralized system operator (CSO). In addition, coordination between various energy carriers is implemented by the energy hub operator at the local level. To ameliorate the flexibility of the NG system in the regional MES, the linepack model of gas pipelines has been considered. Local MES modeling is performed through multiple input/output ports using a linear energy hub model. The proposed model is a mixed-integer linear programming (MILP), which is solved by CPLEX solver in GAMS software

    A combinative method to control output power fluctuations of large grid-connected photovoltaic systems

    No full text
    Environmental, economic and technical benefits of photovoltaic (PV) systems make them to be used in many countries. The main characteristic of PV systems is the fluctuations of their output power. Hence, high penetration of PV systems into electric network could be detrimental to overall system performance. Furthermore, the fluctuations in the output power of PV systems make it difficult to predict their output, and to consider them in generation planning of the units. The main objective of this paper is to propose a hybrid method which can be used to control and reduce the power fluctuations generated from large grid- connected PV systems. The proposed method focuses on using a suitable storage battery along with curtailment of the generated power by operating the PV system below the maximum power point (MPP) and deployment of a diesel generator. These methods are analyzed to investigate the impacts of implementing them on the economic benefits that the PV system owner could gain. To maximize the revenues, an optimization problem is solved. © 2014 IEEE

    Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage systems

    Get PDF
    Increasing penetration of variable nature wind energy sources (WES) due to environmental issues, impose several technical challenges to power system operation as it is difficult to predict its output power because of wind intermittency. Power generation based on gas turbine with fast starting fitness and high ramping could better deal with inherent uncertainties comparing to other power generation sources. Considering natural gas network constraints impacts flexibility and participation of gas-fueled generation units on reserve and energy markets. Hence, the use of flexible energy storage system can reduce renewable sources alternation and the gas network limitation effects on power system operation cost. This paper proposes a two-stage stochastic network-constrained unit commitment based market clearing model for energy and reserve products in coordinated power and gas networks with the integration of compressed air energy storage (CAES) and WES. A six-bus electric system with a six-node gas system and IEEE reliability test system (RTS) 24-bus electric system with a ten-node gas network are considered to perform numerical tests and demonstrate the performance of the proposed model. The effect of including the constraints of the gas system on the power system operation cost in day-ahead co-optimization of energy and reserve products is evaluated using numerical studies. Also, including CAES reduces the power system operation cost, load shedding and wind spillage

    Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products

    Get PDF
    Wind energy sources have created new challenges in power system scheduling to follow the network load. Gas fired units with high ramping could better deal with inherent uncertainties of wind power compared to other power generation sources. The natural gas system constraints affect the flexibility of natural gas-fired power plants in the electrical market. In this paper, three solutions have been proposed to cover the challenges of gas system constraints and the uncertainty of wind power: 1) using information-gap decision theory (IGDT) based robust approach to address the uncertainty caused by the intrinsic nature of wind power, 2) Integration of compressed air energy storage (CAES), and demand response (DR) in day-ahead scheduling and 3) considering flexible ramping products in order to ensure reliable operations, there must be enough ramp to eliminate the variability of wind power in real-time dispatch stage. This paper proposes an IGDT-based robust security constrained unit commitment (SCUC) model for coordinated electricity and natural gas systems with the integration of wind power and emerging flexible resources while taking the flexible ramping products into account. Numerical tests demonstrate the effect of emerging flexible resources on a reduction of system operation cost and the uncertainty of predicted wind power
    corecore