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      Abstract

Increasing penetration of variable nature wind energy sources (WES) due to environmental issues, 

impose several technical challenges to power system operation as it is difficult to predict its output 

power because of wind intermittency. Power generation based on gas turbine with fast starting fitness 

and high ramping could better deal with inherent uncertainties comparing to other power generation 

sources. Considering natural gas network constraints impacts flexibility and participation of gas-

fueled generation units on reserve and energy markets. Hence, the use of flexible energy storage 

system can reduce renewable sources alternation and the gas network limitation effects on power 

system operation cost. This paper proposes a two-stage stochastic network-constrained unit 

commitment based market clearing model for energy and reserve products in coordinated power and 

gas networks with the integration of compressed air energy storage (CAES) and WES. A six-bus 

electric system with a six-node gas system and IEEE reliability test system (RTS) 24-bus electric 

system with a ten-node gas network are considered to perform numerical tests and demonstrate the 

performance of the proposed model. The effect of including the constraints of the gas system on the 

power system operation cost in day-ahead co-optimization of energy and reserve products is evaluated 



ACCEPTED MANUSCRIPT

2

using numerical studies. Also, including CAES reduces the power system operation cost, load 

shedding and wind spillage. 

Keywords: Day-ahead market clearing, natural gas transmission system, compressed air energy 

storage, wind energy sources, two stage stochastic programming.

1. Introductions

At high penetration levels, uncertainty of wind energy sources (WES) in power system provides new 

challenges in system operation. For reducing the uncertainty of WES in power system, additional 

operational flexibility is needed. Operational flexibility stands for enhancing balance between 

generation and system load with minimum operational cost. To increase system flexibility, different 

approaches were presented in literature such as design of flexible ramp product market [1, 2], use of 

demand response [3, 4], energy storages [5, 6], electric vehicles [7, 8] and flexible power generation 

[9].

From the flexibility point of view, generation stations are categorized as base load generation, peaking 

generation, and load following generation.  Examples of base load power plant are nuclear and coal-

fired plants, which are generating constant power. Peaking power plants corresponds to peak load 

duration time. Load following power plants such as gas turbine based generation balancing 

instantaneous generated power and demand having more flexibility, start-up time of less than hour, 

and ramp-rate capability of more than 50 MW/min, while nuclear and coal-fired power plants have 

start-up time between 4 to 8 hours and low ramp-rate approximately 1 MW/min [10]. Besides the 

technical views, natural gas-fueled plants produce up to 60% less CO2 comparing to coal-fired plants. 

Also, they produce no SO2 emissions and less NOx [11]. Based on the annual energy report in 2014, 

natural gas-fueled units would take over 16% of the total United State electricity generation [12]. The 
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rapidly increasing interdependency of gas and electricity causes new challenges in power system 

operation. The volatility of natural gas prices, pressure loss in the gas pipeline could directly affect the 

power dispatch of generating units, operation cost, and power system security.

Higher system flexibility could be achieved by energy storage investment. Compressed air energy 

storage (CAES) systems are considered as a large-scale energy storage for the utility application. There 

are two CAES systems in operation. One is in Hontrof, Germany with the capacity of 290 MW and 

the second one in Alabama with the capacity of 110 MW [13, 14]. The third one in Texas, U.S.A with 

the capacity of 317 MW would be available for operation by 2019 [15]. CAES units with very high 

compress ramping play important role in ancillary services market [16]. CAES drives an electric air 

compressor to compress the air and store in an underground cavern at low-load hours and generate 

electricity using gas turbine and the compressed air at high load hours [17]. This phenomenon 

increases the flexibility of system operation. Finally, using CAES coupled with WES reduces the 

impact of wind energy variability [18]. Some of reports have discussed the advantages of CAES 

system in power systems. In [19], the problem of network-constrained unit commitment (NCUC) with 

CAES system and WES has been solved to study its effect on power system operation cost. The main 

objective is to obtain an hourly dispatch schedule for power plants at minimum cost with electricity 

system constraints. Modeling for wind uncertainty/intermittency has not been considered in the paper. 

The effect of CAES on profit and operating cost by optimally scheduling of WES is described in [20]. 

Authors of [21] have presented an information gap decision theory based self-scheduling for a CAES 

facility considering power price uncertainty. The impact of CAES system on operating cost and static 

voltage stability (SVS) improvement has been studied in [22] by solving the stochastic SCUC problem. 

Incorporation of CAES system has been investigated in [23] to reduce the daily operation cost as well 
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as environmental pollution by solving a multi-objective stochastic unit commitment (UC) considering 

demand response (DR) programs and plug-in electric vehicle parking lots. 

Some of latest researchers have focused on the day ahead network constrained scheduling of combined 

power and gas networks. Authors of [24] proposed a stochastic UC model for studying the 

interdependence of power and gas systems. Random outages of power plants and electric system lines, 

as well as forecast errors of load demand have been considered in the proposed model. Reserve market, 

energy storage system (ESS) and WES are not included in the system. Authors in [25] demonstrated 

the benefits of applying the price-based DR in the optimized stochastic scheduling of power network 

with gas system limits. In [26], the main contribution is to discuss the coordination of interdependent 

gas and power systems for reducing the uncertainty of WES in the stochastic day-ahead  market 

optimization problem. This paper just contains energy market and does not contribute ESS to provide 

a solution for volatility and intermittency of WES. Ref [27] dedicated for a day-ahead power-natural 

gas operation with price-based DR considering flexible ramping products. In [28] was solved a robust 

co-optimization problem of coupled power and gas systems considering gas storage system. This paper 

has discussed the effect of gas storage on total operation cost of power and gas systems in a problem 

of robust day-ahead scheduling. Ref [29] has focused on the integration of power to gas technology in 

coupled power and gas systems with high penetration of WES which results shows considering the 

power to gas technology reduces WES spillage and total operating cost in day-ahead market 

optimization of combined power and gas networks.

A number of researchers have studied the effect of flexible resources in UC based stochastic market-

clearing model of joint energy and reserve. In [30], impact of DR in NCUC problem has been 

investigated on energy and reserve cost. The proposed model is formulated as a two-stage stochastic 

programming. The first stage corresponds to network-constrained UC and the second-stage 
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investigates security assurance in system scenarios. In [31], the hourly reserve has been allocated for 

security-constrained scheduling of stochastic WES. Wind and load forecast errors are addressed 

through a two-stage stochastic model considering an N-1 contingency model for component outages. 

In [32] was solved a two-stage stochastic network constrained market-based model integrated with 

electric vehicles for clearing energy and reserve products, simultaneously. In [33], a stochastic co-

optimization model of joint energy and reserve is proposed to coordinate the interactions among 

flexible providers such as ESS, electric vehicle, and price-based DR.

This paper proposes a two-stage stochastic network constrained UC based market clearing model for 

clearing joint energy and reserve markets in power and gas systems coupled with WES and CAES 

which is shown in Fig. 1. The main features of this work are summarized as follows:

1) The proposed model simulates both day-ahead and real-time markets in which the energy cost, 

scheduled reserve capacity, deployed reserve, load shedding and wind spillage are considered.

2) A natural gas delivery system to gas-fueled power is modeled considering gas transmission 

constraints. These constraints play an important role in the participation of gas-fueled power plants 

on energy and reserve markets.

3) CAES system has been used to reduce load shedding and wind spillage cost and reduce 

dependency on system operation cost to gas system limits.

4) The Monte Carlo simulation is applied in NCUC model to determine system requirements hourly 

reserve to cover load and wind forecast errors in real-time dispatch.
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                 Fig. 1.  The overall illustration of the proposed framework

2. Problem formulation

The formulation of the problem involves the objective function, power plants constraints, CAES 

and also gas network constraints in the first and second stage.

2.1. Objective Function 

The proposed objective function that minimizes the cost of power system operation is expressed 

in Eq. (1). It is formulated as a two-stage stochastic programming, which models both the day-

ahead and real-time markets. The first two lines in Eq. (1) deal with the day ahead market 

modeling, which includes energy cost, scheduled up and down reserve costs, start-up costs for 

power plants as well as costs related to offering energy and up and down-reserve by CAES. The 

third term in Eq. (1) which stimulates the real-time market related to the deployed up and down-
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reserve costs used by power plants and CAES to cover uncertainties caused by forecasting 

network’s load and wind and also the costs associated with the wind curtailment and loss of load 

in each scenario.
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(1)

where t, i, k, r, j and s are indices of hours, power plants, CAES systems, wind energy sources, 

electric loads and scenarios, respectively, while NT, NU, NK, NR, NJ and NS are the number of 

hours, power plants, CAES systems, wind energy sources, electric loads and scenarios;  is the C
iF

cost function of power plant i;  is the start-up cost of power plant i;  and  are the ,i tSU ,
RU
i tC ,

RD
i tC

offer costs of up and down reserves of power plant i at time t; , and  are the _
,

CA Eng
k tC _

,
CA RU
k tC _

,
CA RD
k tC

offer costs of energy, up and down reserves capacity of CAES system k; ,  are the _
,

CA UP
k tC _

,
CA Dn
k tC

deployed up and down reserve offer costs of CAES k at time t;  is wind power spillage cost ,
Curt
r tC

of WES r at time t; is load shedding cost of load j at time t; is the dispatch of power ,j tvoll ,i tP

plant i at time t; and  are up and down reserve capacity of power plant i at time t;  is ,
U
i tR ,

D
i tR ,

DIS
k tP

the discharge power of CAES k at time t; and are scheduled up and down reserves _
,

CA UP
k tR _

,
CA DN
k tR

capacity of CAES k at time t;  and are the deployed up and down reserves of CAES _
, ,

CA UP
k t sr _

, ,
CA DN

k t sr
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k at time t and scenario s;  is wind power spillage of WES r at time t and scenario s; is , ,
Curt

r t sP , ,j t sLS

load shedding of load j at time t and scenario s. 

      2.2. First stage constraints

The first stage constraints including the power and gas systems constraints and the constraints of 

interconnecting these two systems are defined as follows:

      2.2.1. Power network constraints

The power network constraints including power plants, CAES and the transmission network 

constraints are discussed in Eqs. (2)-(29). As shown in Eqs. (2) and (3), the up- and down-reserve 

offered by the power plant on day ahead reserve market is dependent on the ramping capability of 

these units. The maximum/minimum capacity that power plant can offer to the energy and reserve 

markets is expressed in Eqs. (4) and (5). The limitation of power plant's ramp rate in consecutive 

intervals is expressed in Eqs. (6)-(9). The units must have been switched on or off for some time 

before being turned off or on, as expressed in Eqs. (10) and (11).

,0 U up
i t iR R   (2)

,0 D dn
i t iR R   (3)

max
, , ,

U
i t i t i i tP R P I  (4)

min
, , ,

D
i t i t i i tP R P I  (5)

min
, , -1 , ,(1 ) up

i t i t i t i i t iP P Y R Y P    (6)

min
, -1 , , ,(1 ) dn

i t i t i t i i t iP P Z R Z P    (7)

, , , , 1i t i t i t i tY Z I I    (8)

, , 1 ,i t i tY Z i t    (9)
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, 1 , 1 ,( ) ( ) 0up up
i t i i t i tX T I I    (10)

, 1 , , 1( ) ( ) 0dn dn
i t i i t i tX T I I    (11)

where  and  are up and down ramp rate of power plant i; and  are maximum and 
up
iR dn

iR max
iP min

iP

minimum capacity of power plant i;  and  are up and down time of unit i at time t;                  , 1
up
i tX  , 1

dn
i tX 

 and are minimum up and down time of power plant i;  is the commitment state of power up
iT dn

iT ,i tI

plant i.

The up and down spinning reserve offered by the CAES system on the day ahead market also 

depend on the ramping capability of these plants, as shown in Eqs. (12) and (13). In Eqs. (14) and 

(15), the linear relationship between the compressed air and electrical power are defined. The 

quantities of air injected into the storage and the air released from the storage depend on the valve 

size and pressure limits, which are modeled as Eqs. (16) and (17). CAES system can be in the 

mode of production, compressor, or idling shown by Eq. (18). Eq. (19) shows that the amount of 

the stored air is updated every hour, in addition, the amount of the stored air in CAES system has 

the maximum and minimum capacities expressed in Eq. (20). 

_
,0 CA UP up

k t kR R   (12)

_
,0 CA DN dn

k t kR R   (13)

, ,
DIS W W

k t k k tP V (14)

, ,
CH ING ING

k t k k tP a V (15)

,min , , ,max ,
W W W W W
k k t k t k k tV I V V I  (16)

,min , , ,max ,
ING ING ING ING ING

k k t k t k k tV I V V I  (17)
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where  and  are up and down ramp rate of CAES k;  and  are efficiency factor for up
kR dn

kR W
k ING

ka

producing and injecting power of CAES k;  is the stored power in CAES k at time t;  ,
CH

k tP ,max
W

kV

and  are maximum and minimum amount of released air of CAES k at time t;  and  ,min
W

kV ,max
ING

kV ,min
ING

kV

are maximum and minimum amount of injected air to CAES k at time t;  is the generation mode ,
W
k tI

of CAES k at time t;  is storage mode of CAES k at time t;  is stored air level of CAES k ,
ING
k tI ,k tA

at time t;  and  are maximum and minimum capacity of CAES k.max
kA min

kA

Eqs. (21)-(23) express the system power balance, dc power flow, and transmission line constraints.

where  is wind power generation of WES r at time t;  is the forecasted load of load j at time ,r tP ,j tD

t; is power flow of line L at time t; is voltage angle of electric bus b;  is reactance of ,L tPF ,b t Lx

line L;  is capacity of line L. , , ,  and  are the number of power max
LPF bNU bNR bNK bNJ bNL

plants, wind energy sources, CAES systems, electric loads and electric lines connected to bus b.

2.2.2. Natural gas network constraints

, , 1W ING
k t k tI I  (18)

, , -1 , ,
ING W

k t k t k t k tA A V V   (19)

min max
,k k t kA A A  (20)

, , , , , ,
1 1 1 1 1 1

b b b b b bNU NR NK NK NJ NL
DIS CH

i t r t k t k t j t L t
i r k k j L
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     
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', ,
,
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L t

L
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x
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 (22)

max max
,L L t LPF PF PF   (23)
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Gas wells and storage facilities, compressors, pipelines, and valves are used to deliver the natural 

gas to retail customers. Natural gas system and its coupling constraints with the power network 

are discussed as follows:

2.2.2.1. Gas transportation constraints

The gas flowing through the pipeline is a function of degree two of the pressure at the two end 

nodes in which the constant parameter of the pipeline depends on the length, diameter, pressure, 

friction, and gas compositions which defined as Eqs. (24) and (25). There are two types of pipeline, 

passive and active. An active pipeline is the same as passive pipeline with a compressor, which 

increases the pressure difference between the two end nodes and increases the pipeline capacity, 

which is modeled as Eq. (26). As is limited the bus voltage in electric lines, the node pressure in 

the gas pipeline is also limited by Eq. (27). Suppliers can be gas wells or gas storage units that are 

fed into the respective node. Gas supply in each node has a lower and upper limit as defined in Eq. 

(28). Gas consumers are divided into commercial, industrial and residential loads, with higher 

priority residential loads. In addition, natural gas loads have high and low limit in each node, as 

expressed in Eq. (29). Such as the balance of power in each bus, the balance between natural gas 

suppliers and the consumption of natural gas in each node is expressed by Eq. (30). 

2 2
, , , , , ,sgn( , )pl t m t n t m n m t n tF e e C e e     (24)

, ,
, ,

, ,

1
sgn( , )

1
m t n t

m t n t
m t n t

e e
e e

e e
 

 
 

  
(25)

2 2
, , , , , ,sgn( , )pl t m t n t m n m t n tF e e C e e     (26)

min max
,m m t me e e    (27)
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where  is gas flow of pipeline pl;  and  are pressure of gas nodes m and n at time t; ,pl tF ,m te ,n te

 is constant of pipe pl; and are minimum and maximum pressure of gas node m; ,m nC max
me min

me

is gas supply of gas supplier sp at time t; and  are maximum and minimum gas ,sp tU max
spU min

spU

supply of gas supplier sp;  and  are maximum and minimum gas consumption of gas max
lGL min

lGL

load l;  is gas consumption of gas load l at time t; ,  and  are the number ,l tGL mNGS mNGL mNPL

of gas suppliers, gas loads and pipelines connected to gas node m.

2.2.2.1.  Power and gas networks coupling constraints

Gas-fueled power plants and CAES are the largest industrial users of gas, whose production 

capacity in these units is dependent on natural gas transmission services. The amount of gas 

consumed by the gas fueled power plants and the CAES to generate electric power is reported in 

(31)-(32). Natural gas-fueled power plants and CAES have a large load consumption role for the 

gas system (33)-(34). The daily consumption of natural gas by these units should not exceed the 

limit (35)-(36).

min max
,sp sp t spU U U  (28)

min max
,l l t lGL GL GL  (29)

, , ,
1 1 1

m m mNGS NGL NPL

sp t l t pl t
sp l pl

U GL F
  

    (30)

2
, , ,
gasunit

i t i i i t i i tF P P i NGU      (31)

, ,
CAES DIS

k t k k tF HR P (32)

, , ,...,gasunit
l t i tL F l i NGU   (33)
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where  and are fuel consumption of gas-fueled power plant i and CAES k at time t; ,
gasunit

i tF ,
CAES

k tF

and  are fuel function coefficient of gas-fueled power plant i; is heat rate of CAES , i i  i kHR

k; NGU and NK are the number of gas fired units and CAES systems, respectively;  and max
kFC

 are daily gas-fueled consumption of gas-fired unit i and CAES k, respectively.max
iFU

2.3. Second stage constraints

In the second stage, the scenarios related to the load and wind forecast error are considered. In this 

section, the effects of scheduled variables in the first stage are evaluated on load and wind 

generated scenarios. The second stage constraints which are considered in each scenario are as 

follows:

, , ,0 U U
i t s i tr R  (37)
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
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In Eqs. (37)-(40) show the relationship between the deployed reserve in the second stage with the 

scheduled reserve capacity in the first stage. The deployed reserve in each scenario cannot exceed 

the scheduled reserve of power plants and CAES system in the first stage. The power generated 

by power plants and CAES system in each scenario is obtained as the sum of scheduled power at 

the first stage and the deployed reserve in the second stage that is shown in Eqs. (41)-(43). The 

limitation of power plant's ramp rate in consecutive intervals and each scenario is expressed in 

Eqs. (44)-(45). The relationship between the compressed air and electrical power in each scenario 

are expressed in Eqs. (46) and (47). The quantities limits of air injected into the storage and the air 
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released from the storage in each scenario are defined as Eqs. (48) and (49). In addition, Eq. (50) 

expresses that the amount of the stored energy in CAES system is updated in every hour and 

scenario. Also, the amount constraint of the stored energy in CAES in each scenario system is 

expressed as Eq. (51). Also, the initial and final values of stored air in each scenario and in a cycle 

must be equal to each other that is shown in (52). As presented in (27)-(29), the power balance 

constraints in each scenario are expressed in terms of (53)-(55). If a deployed reserve in each 

scenario fails to provide network security, we will be obliged to the compulsory load shedding in 

the system, the limitation of load shedding and curtailed wind power in each scenario is shown in 

(56) and (57). As expressed in Eqs (24)-(36), gas system constraints, and also electricity and 

natural gas networks coupling constraints in each scenario are defined as Eqs. (58)-(70).

3.   Numerical simulations 

In this paper, we have used two test systems, electric six-bus system with a gas six-node system 

and IEEE reliability test system (RTS) 24-bus system with a gas ten-node system, taking into 

account a WES and CAES for testing the proposed model. The effect of the constraints of gas 

systems and CAES on energy, reserve, wind curtailment and lost load costs have been studied. 

The proposed mixed integer non-linear programming (MINLP) model is implemented in 

generalized algebraic modeling systems (GAMS) software and solved using standard branch and 

bound (SBB) solver.

3.1. Modified six-bus system

The modified 6-bus system consists of three gas-fueled power plants with seven lines and three 

electric loads that the specifications of units, bus and lines and hourly load distribution are 

summarized in [11]. In addition, a WES with the maximum capacity of 35 MW and a CAES unit 
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are placed in bus 5, respectively. The 6-node system of natural gas network includes 5 pipes, 1 

compressor, 2 gas suppliers and 6 loads, which is given in Fig. 2. Gas loads consist of three natural 

gas-fueled power plants, a CAES system and two other types of load. Scenario set based on Monte 

Carlo simulation has been produced for modeling system uncertainties, including the error of load 

and network wind forecasting. To demonstrate the network load and WES forecasting errors, the 

normal distribution function is used [29]. To reduce the 1000 scenarios generated to ten scenarios, 

SCENRED is used which is a tool provided by GAMS software. The standard deviation of the 

network load and WES from their mean value have considered 5% and 6%, respectively. Also, 

wind spillage and load shedding costs are equal to 50 $/MWh and 400 $/MWh, respectively. The 

offered energy cost of the natural gas-fueled power plants is equal their fuel coefficients [24]. The 

cost of the scheduled up/down reserve capacity by the gas-fueled thermal units G1, G3 and G2 are 

8, 10 and 11 $/MW, respectively. Also, the cost of start-up proposed by three units is equal 500 

$/MW. The cost of energy offered by CAES unit is equal 4.5 $/MWh. And the scheduled up/down 

reserve capacity cost by CAES unit is equal to 40% of the proposed energy cost by this unit.
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Fig. 2. Illustration of 6-bus electrical and 6-node natural gas systems with WES and CAES units

 The following three case studies are considered:

1. Simultaneous clearing of energy market and reserve, without considering the constraints of the 

gas system.

2. Simultaneous clearing of energy market and reserve with considering the constraints of the gas 

system. 

3. Simultaneous clearing of energy market and reserve with considering the constraints of the gas 

system and CAES.

Case 1. In this case, the constraints of gas system are ignored. The network wind profile for 24-h 

horizon is shown in Fig. 3. As shown in Fig. 4, the low cost unit G1 is committed over the entire 

period, while the high cost unit G2 is committed during hours 15-18, which are peak hours, also 

unit G3 runs from hours 12 to 21. According to the Figs. 5 and 6, at peak hours, most of up/down 
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reserve capacity is provided by the expensive unit G2, during other hours, units G1 and G3 have 

provided up/down reserve capacity. It is noteworthy that during hours 16 and 17, the up reserve 

capacity required to cover the network load and wind forecast errors are equal to 10.937 and 10.948 

MW, while the congestion of the transmission lines has caused that the capacity of the scheduled 

up reserve would be more than required up reserve. Also, most of load shedding has happened 

during hours 11, 14 and 18, because it is more economical to curtail loads instead of committing 

more expensive unit. Expected load shedding and wind curtailment in this case are 3.835 and 6.66 

MWh respectively. The total cost of the operating, in this case, is $73505.86 which includes 

$68222.10 cost of energy and $2678.16 scheduled reserve capacity costs.
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Fig. 3.  Expected wind power of the network
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Fig. 4.  Hourly power generation dispatch for case 1
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Fig. 5.  Scheduled up reserve provided by three thermal units for case 1
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Fig. 6.  Scheduled down reserve provided by three thermal units for case 1

Case 2. In this case, gas system limits are considered. The comparison of the power dispatch of units 

G1 and G2 with case 1 is shown in Fig. 7. Considering the limitation of gas transmission has reduced 

power dispatch of unit G1 which resulted in an increase in the power dispatch of units G2 and G3. 

Total power dispatch of units G2 is increased from 49.247 MWh in case 1 to 294.75 MW in case 2. In 

addition, as shown in Figs. 8 and 9, taking the constraints of the gas system into account has reduced 

the participation of unit G1 in the reserve market. Scheduled up/down reserve capacity by unit G1 has 

decreased from 135.67 and 81.585 MWh in case 1 to 76.947 and 49.998 MWh in case 2 respectively. 

In addition, the congestion of gas pipeline has caused an involuntary load shedding occurrence during 

hours 16 and 17 in the system. Load shedding in this case is decreased to 2.755MWh, due to the 

increase in participation of plants. However, wind spillage has increased to 6.93 MWh. The total cost 

of operating is $80115.16, which includes $76024.27 energy cost and $2931.05 scheduled reserve 

capacity cost that has increased significantly compared to case 1.
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Fig. 7.  Hourly power generation dispatch of G1 and G2 for cases 1 and 2
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Fig. 8.  Scheduled up reserve provided by three thermal units for case 2   
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Fig. 9.  Scheduled down reserve provided by three thermal units for case 2

Case 3. In this case, a CAES system with a maximum generation power of 30 MW is placed in bus 5. 

CAES unit's specification is given in Table 1. The effect of CAES unit on the power dispatch of plants 

G1 and G2 compared with case 2 is shown in Fig. 10. During the low load hours, CAES is in charging 

mode and generation power of unit G1 has increased compared to case 2. For the hours that network 

load is high, CAES is in discharging mode. In this interval, the generation power of G2 has decreased 

about 30% compared with case 2. The CAES system at hour 13 is committed to discharge mode to 

reduce load shedding. The effect of the commitment of CAES unit in the reserve market on the up and 

down reserve capacity scheduled by gas-fueled power plants is shown in Figs. 11 and 12. The required 

down reserve capacity will be provided by CAES system when it is in charge mode. In this interval, 

up reserve capacity scheduled by gas-fueled power plants has been increased compared to case 2. On 

the other hand, most of the needed up reserve capacity is provided by CAES system when it is in 

discharge mode. The scheduled up reserve capacity by unit G2 is 75.173 MWh that has been reduced 

compared with the previous case. In addition, the effect of CAES unit on reducing the wind curtailment 

is shown in Fig. 13. Wind curtailment in this case has decreased to 3.782 MWh. It is noticeable that 
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the commitment of CAES unit in both charge and discharge mode in the reserve market has caused a 

decrease in wind curtailment. The load shedding in this case is equal to 0.49 MWh that has had a 

noticeable decrease compared with two previous cases. Also, as shown in Fig. 14, the total cost of the 

operation in this case is equal $77624.34, which is lower than case 2.
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Fig. 10. Effect of CAES unit on hourly power generation dispatch of G1 and G2 
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Fig. 11. Scheduled up reserve provided by three thermal units for case 3
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Fig. 12. Scheduled down reserve provided by three thermal units for case 3
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Fig. 13. Effect of CAES on the wind curtailment
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Fig. 14. Effect of CAES unit and considering gas transmission constraints on daily operation cost

Table. 1.  Specification parameters of CAES unit in the 6-bus system

max
,k tA min

,k tA ,max
W
kV ,min

W
kV ,max

ING
kV ,min

ING
kV

180 40 30 5 30 5

3.2. Modified IEEE-RTS 24-bus system

The modified IEEE-RTS 24-bus system has 34 power plants including 8 gas-fueled power plants, 

26 units of other types, 34 branches and 17 load buses. In addition, two wind farms with a capacity 

of 500 MW at buses 6 and 23 and two CAES units with a maximum output power of 50 MW are 

located at buses 6 and 23. The specifications of the CAES units is as same the pervious case. In 

addition, eight natural gas-fueled units are located at the buses 4, 6, 8, 10, 12, 15, 18 and 19, 

respectively. Specifications relating to network load, transmission lines and 26 non-natural gas 

units are mentioned in [34, 35]. In this study, the total capacity of 26 non-natural gas units has 

decreased by 10%. In addition, the capacity of lines 2-6 and 6-10 has increased to 200 MW. The 

ten-node system of the natural gas network consists of 10 pipelines, 14 loads of natural gas and 

two compressors, which is shown in Fig. 15. Natural gas loads consist of eight natural gas-fueled 

units, two CAES units and four other types of loads. The specifications of the natural gas network 
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and gas-fueled power plants are expressed in [27]. The cost of up/down reserve capacity offered 

by the units is about 40% of their first-order coefficients. Monte Carlo simulation has been applied 

to model the uncertainties due to the load and network wind forecast. Wind and network load 

errors in this study were considered to be 6% and 5%, respectively. In addition, the cost of the load 

shedding and wind spillage is equal to 400 $/MWh and 50 $/MWh, respectively. The cost of energy 

and the up/down reserve capacity provided by the two CAES systems are considered to be 4.5 

$/MWh and 1.8 $/MW, respectively. The effect of gas system constraints and CAES on the 

operating cost has been shown in Table 2. In case 1, the gas system constraints are ignored. In this 

case, the total operating cost is $605814.78. In case 2, the gas system constraints are considered; 

in this case, the total operation cost has increased to $620584.91, which includes $591513.43 

energy cost and $22427.26 reserve (total scheduled reserve capacity and deployed reserve) cost. 

In addition, the cost of load shedding has fallen to $4890.08, this decrease is due to the increase 

participation of units. In addition, the cost of wind curtailment is the same cost of case 1. The effect 

of CAES units participation in the reserve and energy markets on system operating cost, load 

shedding and wind spillage considering the constraints of the gas system has been investigated in 

case 3. The cost of load shedding and wind spillage have decreased to $1785.53 and $218.05 

respectively. In addition, the total cost of the daily operation has fallen to $610731.11, which 

includes $584473.09 energy costs and $24255.44 reserve cost. 
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Fig. 15. Ten-node natural gas system

Table. 2. The IEEE-RTS costs

Case Daily Operation 
cost ($) Energy cost ($) Cost of reserve ($) Cost of load 

shedding ($)
Cost of wind 
spillage ($)

Case 1 605814.78 578898.11 20186.20 4976.33 1754.14

Case 2 620584.91 591513.43 22427.26 4890.08 1754.14

Case 3 610732.11 584473.09 24255.44 1785.53 218.05

4.   CONCLUSION

This paper presented a stochastic network-constrained co-optimization of energy and reserve products 

considering gas system constraints with WES and compressed air energy storage (CAES). The 

presented stochastic model has been formulated as a two-stage stochastic programming problem that 

simulates both day-ahead and real-time markets in which the energy cost, scheduled reserve capacity, 

deployed reserve, load shedding and wind spillage were considered. In order to cover the uncertainties 

caused by forecast errors in the load and network wind has used flexible recourses with fast start 
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capability. In this paper, flexible resources are including natural gas-fueled power plants and CAES. 

In addition, we have modeled the delivery system of natural gas to gas-fueled power plants as gas 

system constraints. The effect of considering these constraints on the participation of gas-fueled power 

plant in the energy and reserve markets and also power dispatch of this units have been investigated, 

which results showed an increase in the system energy and reserve costs. In addition, the effects of 

CAES participation in the energy and reserve markets on hourly dispatch of units, wind power dispatch 

and load shedding have been analyzed that results showed a decrease in the daily operation cost, 

curtailed wind power and load shedding. In our future research, we will focus especially on the multi-

objective market clearing of joint energy and reserve in multi-carrier energy systems as an economic 

and environmental scheme in which emission function is considered as a new objective in the proposed 

model.
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