30,206 research outputs found

    Ab-initio study of the bandgap engineering of Al(1-x)Ga(x)N for optoelectronic applications

    Full text link
    A theoretical study of Al(1-x)Ga(x)N, based on full-potential linearized augmented plane wave method, is used to investigate the variations in the bandgap, optical properties and non-linear behavior of the compound with the variation of Ga concentration. It is found that the bandgap decreases with the increase of Ga in Al(1-x)Ga(x)N. A maximum value of 5.5 eV is determined for the bandgap of pure AlN which reaches to minimum value of 3.0 eV when Al is completely replaced by Ga. The static index of refraction and dielectric constant decreases with the increase in bandgap of the material, assigning a high index of refraction to pure GaN when compared to pure AlN. The refractive index drops below 1 for photon energies larger than 14 eV results group velocity of the incident radiation higher than the vacuum velocity of light. This astonishing result shows that at higher energies the optical properties of the material shifts from linear to non-linear. Furthermore, frequency dependent reflectivity and absorption coefficients show that peak value of the absorption coefficient and reflectivity shifts towards lower energy in the UV spectrum with the increase in Ga concentration. This comprehensive theoretical study of the optoelectronic properties of the alloys is presented for the first time which predicts that the material can be effectively used in the optical devices working in the visible and UV spectrum.Comment: 18 pages, 7 figure

    Event by Event Analysis of High Multiplicity Events Produced in 158 A GeV/c 208 Pb- 208 Pb Collisions

    Full text link
    An extensive analysis of individual high multiplicity events produced in 158 A GeV /c 208Pb- 208Pb collisions is carried by adopting different methods to examine the anomalous behavior of these rare events. A method of selecting the events with densely populated narrow regions or spikes out of a given sample of collision events is discussed.Employing this approach two events with large spikes in their eta- and phi- distributions are selected for further analysis. For the sake of comparison, another two events which do not exhibit such spikes are simultaneously analyzed. The findings suggest that the systematic studies of particle density fluctuations in one- and two-dimensional phase-spaces and comparison with those obtained from the studies of correlation free Monte Carlo events, would be useful for identifying the events with large dynamical fluctuations. Formation of clusters or jet like phenomena in multihadronic final states in individual events is also discussed and the experimental findings are compared with the independent particle emission hypothesis by carrying out Monte Carlo simulations

    Market Power and Efficiency of Islamic Banking and Conventional Banking in Indonesia

    Full text link
    ASEAN Economic Community (AEC) of banking industry requires both Islamic and conventional banking to improve their efficiency because the competition in banking market industry will be more intense. Therefore, this study aims to identify the type of hyphotesis of industrial organization which exists in Islamic and conventional banks in order to investigate their readiness for AEC. The research sampling consists of 10 Islamic banks and 10 conventional banks from January 2009 to December 2016. To measure x-efficiency and scale efficiency, this research uses Data Envelopment Analysis (DEA). Meanwhile, the concentration is measured by Lerner index. The hypothesis is tested by using panel regression. The result shows SCP (Structure-Conduct-Performance) hypothesis is closely applied to Islamic and conventional banks because market concentration significantly influences profitability. RMP (Relative Market Power) hypothesis is also closely applied to Islamic and conventional banking, this indicates Indonesian banking has market power in determining prices and this condition makes the profit higher. RES (Relative Efficiency Structure) and SES (Scale Efficiency Structure) hypothesis do not exist in both conventional and Islamic banks because x-efficiency and scale efficiency do not affect profitability, concentration, and market share simultaneously. Market power and efficiency researches are commonly conducted in conventional banking, however there are only a few research in Islamic banking area. The novelty of this study is the comparison between conventional and Islamic banking in the term of market structure and efficiency

    Complexity in manufacturing systems and its measures: a literature review

    Get PDF
    Complexity in manufacturing systems still remains a challenge and leads to operational issues and increased production cost. In this paper, drivers of complexity and typical symptoms of complex manufacturing systems are identified. A comprehensive review of studies published within the last two decades to assess manufacturing system complexity are presented. The key contributions of this review are: 1) a classification of complexity assessment methods based on perceived complexity symptoms; 2) a comprehensive review of assessment methods with cross-evaluation to identify appropriate use based on available data; 3) recommendations for the wider academic and industrial community, based on research trends identified in the literature, as to how complexity assessment should be addressed in the future. It is concluded that the assessment of complexity is necessary so that it can be controlled effectively, however the industry suffers from a lack of practical tools to support in this endeavour

    A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload

    Get PDF
    © 2016 The Authors. The assessment and optimisation of postural stress and physical fatigue can be challenging and is typically conducted only after the design of manual operations has been finalised. However early assessment of manual operations and identification of critical factors that are deemed outside of an appropriate envelope can avoid the time and costs often associated with re-designing machines and layout for operator work processes. This research presents a low cost software solution based on a simplified skeleton model that uses operator position and workload data extracted from a simulation model used for virtual manufacturing process planning. The developed approach aims to assess postural stress and physical fatigue scores of assembly operations, as they are being designed and simulated virtually. The model is based on the Automotive Assembly Worksheet and the Garg's metabolic rate prediction model. The proposed research focuses on the integration of virtual process planning, ergonomic and metabolic analysis tools, and on automating human factor assessment to enable optimisation of assembly operations and workload capabilities at early design stage

    Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic

    Get PDF
    Complexity continues to be a challenge in manufacturing systems, resulting in ever-inflating costs, operational issues and increased lead times to product realisation. Assessing complexity realizes the reduction and management of complexity sources which contributes to lowering associated engineering costs and time, improves productivity and increases profitability. This paper proposes an approach for evaluating the design of automated manufacturing processes based on the structural complexity of the control logic. Six complexity indices are introduced and formulated: Coupling, Restrictiveness, Diameter, Branching, Centralization, and Uncertainty. An overall Logical Complexity Index (CL) which combines all of these indices is developed and demonstrated using a simple pick and place automation process. The results indicate that the proposed approach can help design automation logics with the least complexity and compare alternatives that meet the requirements during initial design stages
    corecore