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Abstract: Complexity in manufacturing systems still remains a challenge and
leads to operational issues and increased production cost. In this paper, drivers
of complexity and typical symptoms of complex manufacturing systems are
identified. A comprehensive review of studies published within the last two
decades to assess manufacturing system complexity are presented. The key
contributions of this review are: 1) a classification of complexity assessment
methods based on perceived complexity symptoms; 2) a comprehensive review
of assessment methods with cross-evaluation to identify appropriate use based
on available data; 3) recommendations for the wider academic and industrial
community, based on research trends identified in the literature, as to how
complexity assessment should be addressed in the future. It is concluded that the
assessment of complexity is necessary so that it can be controlled effectively,
however the industry suffers from a lack of practical tools to support in this
endeavour.
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1 Introduction

In the last century, the global manufacturing industry has been shaped by various
economic, technological and socio-political progresses, socio-environmental regulations,
heterogeneity and above all, globalisation of markets and increased competitiveness
(ElMaraghy et al., 2012). Consequently, newmanufacturing paradigms including increased
demand for high-variety production, reduced product life-cycles, and mass customisation
have emerged (Efthymiou et al., 2016). This requires manufacturing enterprises to
constantly improve their production systems in terms of flexibility, reliability, and
responsiveness to satisfy customer demands (Vrabič and Butala, 2011). To meet production
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targets of increasingly complex products with higher quality requirements and reduced
time to market, the manufacturing industry employs highly automated production systems
composed of numerous sub-systems of various nature, including: machining and processing
systems, material handling devices and material storage and retrieval units (Cho et al.,
2009). According to ElMaraghy et al. (2012), these advancements and modifications have
increased complexity of manufacturing organisations all the way down to the shop floors.

An increase in manufacturing systems complexity was reported to negatively impact
all aspects of manufacturing, in terms of: production quality, reliability, throughput and
production time, and disturbs the system’s efficiency at design, operation, maintenance, and
management levels (Schuh et al., 2015).Moreover, complexity and the occurrence of failure
within manufacturing systems are tightly coupled (ElMaraghy et al., 2012). An increase
in complexity in manufacturing systems is only acceptable if it enhances capabilities,
functions, usability, and performance of the system, but should otherwise be eliminated or
reduced (Samy and ElMaraghy, 2012). Therefore, complexity and its impact on the system
key performance indicators (KPIs) should be identified and quantified to remain profitable
and competitive, and to respond rapidly to the volatile markets and rising product variety
(Mattsson et al., 2011). In order to achieve this, an analysis and assessment of complexity
identifying its impacts is vital (Gotzfried, 2013). This highlights critical managerial aspects,
and thus enables the development of strategies to manage system complexity. Figure 1
summarises the existence and evolution of complexity in the manufacturing industry along
with its cause-effect relationships.

Figure 1 The existence and evolution of complexity in the manufacturing industry along with its
cause-effect relationships (see online version for colours)
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In the literature, several reviews already exist that address the assessment methods and
management of complexity in manufacturing. De Toni et al. (2001) is perhaps one of the
earliest reviews on manufacturing system complexity and as a consequence of this the
review is limited by the knowledge available at the time. More recently ElMaraghy et al.
(2012) presented a review however due to its broad scope, a critical cross-evaluation of
assessment methods was not present. Finally, Efthymiou et al. (2016) provide a critical
review but focus primarily on quantitative assessment methods. This paper addresses the
identified shortcomings of existing works by:

1 Consolidating the literature on complexity assessment in manufacturing of the last
two decades and cross-evaluating both qualitative and quantitative methods.

2 Based on the trends identified, presents a set of recommendations for the academic
community as to how complexity assessment could be addressed to support industrial
requirements.

The rest of the paper is organised as follows: Section 2 presents an introduction to the
drivers of complexity in manufacturing industry and types of complexity experienced in
manufacturing systems. Section 3 reviews the literature and identifies the typical symptoms
observed in complex manufacturing systems. Section 4 presents the theoretical foundation
of complexity evaluation methods and provides a detailed look on the studies published in
the literature. This section also addresses the limitations of the reviewed practices. Finally, a
comprehensive outlook for proposed future research directions and conclusion of the paper
are presented in Sections 5 and 6, respectively.

2 Manufacturing systems complexity

2.1 Drivers of manufacturing systems complexity

Modern manufacturing systems work in ambiguous and rapidly changing environment
guided by fluctuations in global, socio-political, and economic factors (ElMaraghy et al.,
2013). They are directly influenced by the external complexity driven by demand
uncertainty and volatility, technological advancements, global competition, and supplier
variability (Gotzfried, 2013). These drivers can be associated and linked with the internal
complexity in a company, where they are mainly leveraged by factors such as: a
high number of heterogeneous customers, large product portfolios, increased product
complexity, and a high number and variety of business targets (Marti, 2007). This results in
increased uncertainty inmanufacturing systems leading to increased information generation
and unpredicted/unknown behaviours (ElMaraghy et al., 2013). As an example, product
variety necessitates a higher degree of flexibility for handling components due to the
variations in the technical and functional aspects of the products such as: shape, size, and
configuration (Chinnathai et al., 2017). This results in higher system complexity and costs
due to the new or modified equipment that must accommodate the product variety and
floor space requirements. Handling demand uncertainty requires the system to react and
adapt, resulting in stochastic line balancing problems (Bilge et al., 2015). On the other
hand, an increase in demand often requires more sophisticated machine design and more
machines as cycle times become the focus of the manufacturing system, thus returning to



Complexity in manufacturing systems and its measures 5

the line balancing problem (Fathi et al., 2016). High quality standards demand additional
quality check processes within the manufacturing system, again increasing the number of
stations, or even the complexity of a given station such that it can assess process quality. In
addition, management, analysis, and appropriate exploitation of quality data all contribute
to manufacturing system complexity.

Uncertainty created by the product variety, is also attributed to the complexity of
tasks that operators need to carry out which, if not designed correctly, can reach the
cognitive and physical limits of humans (Alkan et al., 2016a). A combination of quantitative
and qualitative parameters contributes towards operator-system interaction complexity.
Quantitative aspects include the length of a sequence, the number of tools that need to
be used, ergonomics, clarity of instructions, the quality requirements, and the variety of
products that the operator is required to work on (Falck et al., 2014). Qualitative aspects
refer to an operator’s level of training, expertise and competence, personal factors, such
as: culture, background and management strategies (Liu and Li, 2012). The interactions
of these parameters can result in unpredictable behaviour which can be difficult to control
(Alkan et al., 2016b).

As manufacturing system functionality increases, so too does the manufacturing control
system complexity. This is due to the integration of more modules, communication
protocols, and interfaces, i.e., an increase in more dependencies and couplings (Alkan
et al., 2017). This, in turn, impacts on the re-usability, modifiability, interpret-ability, and
maintenance of the control software (Phukan et al., 2005). Complexity also affects system
ramp-up and reconfiguration efficiency. Moreover, complex material flow impacts the shop
floor decision making efficiency by disturbing material flow smoothness, lengthening the
travel time, creating workstation starvation, and increasing the possibility of bottlenecks
and downtime (Huang, 2003). Multi-disciplinarity is a natural result of new manufacturing
paradigms, since to satisfy customer demands, products and processes require integration of
multiple disciplines. Multi-disciplinary systems typically consist of engineering domains of
varied specialisations, e.g., business management, human resources, quality control, stock
control, andmanymore. Although they are considered to be a source of innovation that adds
value, they face increase in both complexity and the chance of design failures (Tomiyama
et al., 2007). A high level of concurrent engineering facilitated by multi-disciplinarity,
dramatically increases both product and product development complexity which in turn
impacts the manufacturing system complexity (Tomiyama et al., 2007).

2.2 Types of complexity

Complexity in manufacturing systems can be defined within two domains: physical and
functional (ElMaraghy et al., 2012) (Figure 2). Complexity in the physical domain is further
categorised into two groups: static and dynamic (Frizelle and Woodcock, 1995). Static
(or structural) complexity represents time independent characteristics of a manufacturing
system and focuses on types of sub-systems and strength of interconnections (Deshmukh,
1998). Dynamic (or operational) complexity represents system’s operational characteristics
and involves aspects of time and randomness (Frizelle and Suhov, 2001). Dynamic
complexity is described as “the expected amount of information required to describe
state of a system deviating from its performance expectations due to the unpredictability”
(ElMaraghy et al., 2012).
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Figure 2 Classification of complexity types in physical and functional domains (see online
version for colours)

Source: Adapted from ElMaraghy et al. (2012)

Complexity in the functional domain is also classified into two sub-groups: time
independent and time dependent (Sun, 2013). It is used to represent emerged
uncertainty while the system is performing certain tasks under pre-defined functional
requirements (Sun, 2013). Time-independent complexity arises from non-satisfied
functional requirements during the system’s life cycle due to the factors such as: lack of
understanding and/or knowledge about the system or component interactions (Wiendahl
and Scholtissek, 1994) and the inability to cope with a large variety of components and
interactions. Time-independent complexity is further categorised into real and imaginary.
Time-independent real complexity can be considered as the information content, which is
a unit of probability of achieving functional requirements (Sun, 2013). Time-independent
imaginary complexity is referred to as the unpredictability due to the lack of understanding
between functional requirements and design parameters (Lee, 2003). Time dependent
complexity may increase with respect to time (Chryssolouris et al., 2013). It arises in the
forms of combinatorial and periodic complexity, depending on whether unpredictability
grows open-endedly or occasionally stops at a specific point and returns to the initial levels
(Sun, 2013).

3 Symptoms of complex manufacturing systems

Analysing and understanding manufacturing complexity allows us to develop and
implement the correct strategies for management of complexity (Efthymiou et al., 2016).
This study assesses publications on manufacturing system complexity through a systematic
review. The following databases were scanned: ScienceDirect, IEEExplore, Emerald
Insight, ACM Digital Library, Scopus, Springerlink, Web of Science, and Google Scholar.
Ninety-three studies that fulfilled the following conditions were further investigated:
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1 Complexity reported in the research must be associated to manufacturing systems or
system’s KPIs.

2 Study must provide, at least: a theoretical development, extension of a previous
approach, a real test case implementation, or an optimisation application.

3 Study must be published in or after 1995.

4 Study must be accessible and offer well-defined and clear information.

Table 1 The symptoms of complex manufacturing systems

Class of symptoms Symptoms used in the assessment of manufacturing system complexity

Nonlinear behaviours The existence of repeating patterns observed in the
long-term behaviours.
Sensitivity to the initial demand and production control parameters.
High impact of structural modifications on the
manufacturing performance.

Operational uncertainties Increased information content of resource states and
process scheduling queues.
Significant deviations between scheduled and observed resource states.
Uncertainty in handling product variety.
Stochasticity and unpredictability of manufacturing processes
and system KPIs.
Existence of the turbulence in the manufacturing flow.

Physical situation Increased diversity, quantity and information content of
system related elements.
High dependency and interconnectivity between system related elements.

Human perceptions Knowledge complexity
Technological complexity

Based on the observations from the literature, different definitions for the conceptualisation
of specific aspects of complexity in manufacturing systems have been found. These
definitions distinguish manufacturing system complexity based on a number of symptoms
to indicate its existence. Accordingly, twelve symptoms that are perceived to be an
indication of complexity have been identified (according to existing literature within this
domain). These symptoms are then grouped into four classes which have been selected
based on the perspective of observation of a given symptom: nonlinear behaviours,
operational uncertainties, physical situation and human perceptions, and summarised in
Table 1. Table 2 classifies the reviewed studies based on the complexity type, class of
symptoms and the theoretical origins of the assessment method used.



8 B. Alkan et al.

Table 2 Review of the literature on manufacturing system complexity
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Table 2 Review of the literature on manufacturing system complexity (continued)
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Table 2 Review of the literature on manufacturing system complexity (continued)
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č
an
d
B
ut
al
a
(2
01
2)

X
X

X
Zh

an
g
(2
01
2)

X
X

X
X

N
ot
es
:S

:s
ta
tic
,D

:d
yn
am

ic
,N

B
:n
on
lin

ea
rb

eh
av
io
ur
s,P

S:
ph
ys
ic
al
si
tu
at
io
n,
O
U
:o
pe
ra
tio

na
lu
nc
er
ta
in
tie
s,
H
P:

hu
m
an

pe
rc
ep
tio

ns
,S

E:
Sh

an
no
n
en
tro

py
,

K
LZ

:K
ol
m
og
or
ov

co
m
pl
ex
ity

Le
m
pe
l-Z

iv
fin

ite
se
qu
en
ce

an
al
ys
is
,C

M
:c
om

pu
ta
tio

na
lm

ec
ha
ni
cs
,F

D
:f
lu
id
dy
na
m
ic
s,
LE

T:
m
ax
im

al
Ly

ap
un
ov

ex
po
ne
nt
te
st
in
g,

PS
R
:p
ha
se

sp
ac
e
re
co
ns
tru

ct
io
n,
B
D
:b
ifu

rc
at
io
n
di
ag
ra
m
,E

:e
nu
m
er
at
io
n,
C
C
:c
od
in
g
an
d
cl
as
si
fic

at
io
n,
G
T:

gr
ap
h
th
eo
ry

ba
se
d
m
et
ric

s,
S:

su
rv
ey
s.



Complexity in manufacturing systems and its measures 11

Table 2 Review of the literature on manufacturing system complexity (continued)
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ká
ša
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3.1 Symptoms observed from nonlinear behaviours

Themost typical feature of complex systems is the existence of nonlinear behaviours. In the
literature, several studies perceive complexity in the existence of symptoms associated with
unstable dynamic phenomena whose identification require scanning of production records
over a reasonable time interval. The first symptom in this class, is the existence of repeating
patterns observed in the long-term behaviours of production systems. In this context,
long-term behaviours indicate the interaction and evolution of dynamic system parameters
which are defined by geometrical structures generated through phase space reconstruction
methods. This symptom is investigated in the following studies (Chryssolouris et al., 2004;
Deif and ElMaraghy, 2009; Donner et al., 2008; Giannelos et al., 2007; Wiendahl and
Scheffczyk, 1999; Katzorke and Pikovsky, 2000). The second symptom is the sensitivity
to initial conditions. Accordingly, systems exhibiting large deviations in meeting due
dates or performance goals by even small changes in initial conditions or production
control parameters, such as WIP levels, can be considered as complex. This symptom
is a result of both static and dynamic complexity resulting from the factors such as:
production delays, multiple-feedback loops and external and internal disturbances, and
analysed through the approaches derived from the chaos and nonlinear dynamics theory,
such as bifurcation diagrams and maximal Lyapunov exponent testing, in the following
studies: (Alfaro and Sepulveda, 2006; Donner et al., 2008; Massotte, 1996; Papakostas
and Mourtzis, 2007; Schmitz et al., 2002; Scholz-Reiter et al., 2002; Wang et al., 2005).
The third symptom in this class is the dynamic behaviours emerging from the coupling
between the intrinsic configuration of the system and uncertainty linked with system’s
operations. This symptom is a reflection of static complexity occurring due to the structural
alterations (e.g., adding/removing equipment) and analysed via bifurcation diagrams and
maximal Lyapunov exponent testing in (Papakostas et al., 2009) and (Schmitz et al., 2002),
respectively.

3.2 Symptoms observed via operational uncertainties

An increase in complexity results in various operational problems including
batch-and-queue decision-making inefficiency, lack of process synchronisation, increased
lead and ramp-up times, and performance fluctuations (Aqlan et al., 2017). In the literature,
a number of symptoms, observed through uncertainties in the operational flow, is employed
to perceive manufacturing system complexity. The first symptom in this class is the
increased amount of information which is needed to define the scheduled state of the
system and its components. This symptom is a reflection of inherent effort of the process for
producing the required quantity and kind of products in a certain time interval (Calinescu
et al., 2000), and it arises due to the various factors, including: increased number of parts,
operations and machines, increased sequence flexibility, and increased resource sharing,
etc. In this context, information content is linked to the uncertainty associated with the
probability of an entity being in a predefined state. This symptom is a direct result of
static complexity and is analysed by means of Shannon entropy in the following studies:
(Calinescu, 2002; Deshmukh, 1998; Efstathiou et al., 2002; Frizelle and Suhov, 2008;
Frizelle and Woodcock, 1995; Huaccho Huatuco et al., 2001; Liu et al., 2008; Makui and
Aryanezhad, 2003; Park and Okudan Kremer, 2015; Zhang and Efstathiou, 2006; Zhang,
2011, 2012). The second symptom is the operational dynamism occurring due to several
factors such as: part reject, rework, absenteeism, and resource breakdowns, etc. (Calinescu,
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2002). Accordingly, systems in which it is difficult to monitor their operational status, can
be considered as complex (Frizelle and Woodcock, 1995). In this context, complexity is
estimated by analysing the deviation between observed and scheduled resource states (in
other words, the probability of a resource being out of schedule) which is captured through
real-time process observations taken at regular intervals. This symptom is a consequence
of dynamic complexity and investigated by means of Shannon entropy in numerous studies
(Alfaro and Sepulveda, 2006; Calinescu et al., 1998; Calinescu, 2002; Frizelle and Suhov,
2001; Frizelle and Woodcock, 1995; Huaccho Huatuco et al., 2009; Sivadasan et al., 2010;
Smart et al., 2013; Wu et al., 2007; Zhang and Efstathiou, 2006; Zhang, 2011, 2012). The
third symptom in this class is the uncertainty in handling increased product variety which
is often linked to the risk factors associated with operator’s choices of tools, fixtures, and
assembly procedures. In this context, complexity is referred as the averaged vagueness in
a random process of managing a number of product variants, which depends on the sum of
the introduced varieties at a workstation and the conveyed varieties from all the upstream
workstations. This symptom, also referred to as the operator choice complexity, is a
representation of structural complexity associated with the system configuration topology,
and investigated by means of Shannon entropy in the following studies: (Fast-Berglund
et al., 2013; Wang and Hu, 2010; Wang, 2010; Wang et al., 2011, 2013; Zhu et al., 2007,
2008; Zhu, 2009). The fourth symptom in this class is the degree of uncertainty associated
to the predictability of manufacturing operations and system KPIs. This symptom is a
consequence of dynamic complexity occurring due to the factors such as: incompleteness
of information, disturbances, and uncertainties inherent to the manufacturing environment,
and captured by analysing the prediction efficiency of manufacturing processes (Vrabič
and Butala, 2011, 2012) and by analysing unpredictability of manufacturing system
KPIs (Chryssolouris et al., 2013; Efthymiou et al., 2014; Mourtzis et al., 2013). The last
symptom in this class is the existence of manufacturing flow turbulence arising due to the
interactions among system performance, lead time, process structure and manufacturing
system configurations. In the literature, this symptom is analysed by employing the
concept of Reynold number derived from fluid dynamics analogy in the following studies
(Efthymiou et al., 2009; Schleifenbaum et al., 2009; Romano, 2009).

3.3 Symptoms observed from the physical situation

Complex system theory describes a complex system as a system that is composed of
many components and exhibits hierarchy and self-organisation arising due to the dynamic
interaction of its components (Bar-Yam, 1997). From this viewpoint, the third class
contains complexity symptoms that can be perceived through analysing system’s physical
situation:

1 Increased variety, quantity and information content of system elements.

2 The significance of their interrelations and interdependencies.

These symptoms can be searched within the various aspects of the system, e.g., system
configuration, material flow patterns, control and information flow patterns, intrinsic
process hierarchy, etc., and analysed by means of heuristics including: enumeration
and classification and coding, as well as the methods derived from graph theory.
Enumeration based approaches try to capture information content of the system by
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counting system-related elements, e.g., resources, products, customer orders, tasks, etc.
in a systematic manner (Garbie and Shikdar, 2010; Kim, 1999; Sarkis, 1997; Schoettl
et al., 2014; Windt, 2008). In this group, a number of studies also attempted to link
complexity to the system performance by correlating the enumerated elements with the real
or simulated production data (Gabriel, 2007, 2013; Han et al., 2011; Zeltzer et al., 2013).
Classification and coding based approaches, on the other hand, finds the relative importance
of each enumerated factors by means of heuristics based classifications (ElMaraghy and
Urbanic, 2003; ElMaraghy, 2005; Liu et al., 2015; Samy et al., 2015; Samy and ElMaraghy,
2012; Urbanic and ElMaraghy, 2006). These approaches are also used together with the
Shannon entropy to link complexity to the uncertainty related to the information content
of resource states (e.g., resource availability) in (ElMaraghy et al., 2005; Kuzgunkaya
and ElMaraghy, 2006). In the literature, complexity is also described by the system’s
information content which is characterised by the connectivity and dependency among
various system elements (e.g., material flow connections and dependency within the
process hierarchy etc.). These approaches often use methods derived from graph theory and
information entropy (e.g., node betweenness centrality, vertex degree, etc.) (Alkan et al.,
2016c; ElMaraghy et al., 2014; Espinoza et al., 2012; Maksimović and Petrović, 2009;
Samy et al., 2015; Chryssolouris et al., 2013; Modrak et al., 2013; Modrak and Bednar,
2016).

3.4 Symptoms observed from human perceptions

Along with its objectivity, complexity also has a subjective nature, making it dependent on
the system being considered and the view of the human spectator (Mattson, 2013). In view
of that, the last class of symptoms contains complexity indicators which can be perceived
by humans. In this class, the symptoms are classified into two sub-groups:

1 Technological complexity indicating the complexity of the underlying technology
used to perform system related activities.

2 Knowledge complexity representing the domain-specific knowledge and
decision-making complexity.

In the related literature, individual perspectives about manufacturing system complexity
are analysed and captured using surveys (i.e., structured and semi-structured questionnaires
and interviews) (Calinescu et al., 1998; Calinescu, 2002; Guimaraes et al., 1999; Kim, 1999;
Mattsson et al., 2011; Mattson, 2013; Mattsson et al., 2012, 2014, 2016; Thomé and Sousa,
2016).

4 Methods for assessing complexity in manufacturing systems

The previous section has identified the symptoms of complexity which exist within several
aspects of a manufacturing system. This chapter examines the mentioned assessment and
analysis methods for capturing these symptoms. By following a classification scheme
mainly based on the taxonomy presented by Efthymiou et al. (2016), these methods are
investigated according to respective theoretical origins:
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1 chaos and nonlinear dynamics theory

2 information theory

3 heuristics

4 graph theory

5 fluid dynamics analogy

6 surveys

7 hybrid methods.

Figure 3 shows the complexity symptom-assessment method pairings.

Figure 3 The complexity symptom-assessment method pairings (see online version for colours)

4.1 Chaos and nonlinear dynamics theory

Chaos and nonlinear dynamics system theory is a trending mathematical area with
increasing interests in the fields of physics, engineering and social sciences. In the literature,
the methods derived from chaos and nonlinear dynamics theory are often employed to
measure complexity through analysing symptoms connected to the system’s dynamic
behaviours. These methods include: phase space reconstruction, maximal Lyapunov
exponent testing and bifurcation diagrams.

4.1.1 Phase space reconstruction

Phase space reconstruction aims to construct the system state through using corresponding
historical data and observing it in a higher dimensional space (Rong-Yi and Xiao-Jing,
2011). Reconstruction of a phase space can be done via several different ways, such
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as: phase portraits, Poincare map, recurrence plots and time delay plots. Phase space
reconstruction techniques provide a deeper understanding of system behaviours and
corresponding factors that contribute towards behavioural changes by offering views of
the system in geometric patterns. They have been employed in several studies aiming to
analyse nonlinear and unpredictable behaviours of modern production systems. Wiendahl
and Scheffczyk (1999) investigated a simple simulated model of a paint-spraying system.
The paint thickness of a coating depending on the previous layer of coating and machine
parameters such as adjustable spray gun pressure, are investigated. The employed control
function was found to cause deterministic chaotic behaviours inducing a unique pattern in
the phase space while being undetectable in statistical analyses. Katzorke and Pikovsky
(2000) inspected a simple balanced three-funnel model of production dynamics for both
continuous and discrete order flows. Peters et al. (2004) examined dynamical behaviours
of an idealised manufacturing system subjected to the interaction of scheduling policies
and buffer capacity restrictions. Poincare map and bifurcation diagrams were employed
in these analyses. Chryssolouris et al. (2004) and Giannelos et al. (2007) studied dynamic
behaviours of dispatching rules in a simple manufacturing system using phase portraits
and time delay plots, respectively. Donner et al. (2008) studied dynamics of a logistic
network consisting of a low number of cooperating manufacturers through discrete event
simulations and the recurrence plots phase space reconstruction. Deif and ElMaraghy
(2009) adapted system dynamics approach to study the dynamic capacity scalability in
multi-stage manufacturing systems associated with the operational complexity of the
capacity scaling processes. Complexity was defined as the required effort calculated in
terms of magnitude and frequency of the capacity scaling response in dynamic demand.

4.1.2 Maximal Lyapunov exponent testing

Maximal Lyapunov exponents testing studies the exponential rate of divergence or
convergence of trajectories starting from nearby initial points in phase space and hence,
is primarily used to study the sensitivity and dependency of dynamic systems on their
initial conditions (Sandri, 1996). Systems that have at least one positive maximal Lyapunov
exponent are considered sensitive and chaotic. In the literature, several studies have
analysed chaotic and nonlinear behaviours of manufacturing systems using maximal
Lyapunov exponents testing. Massotte (1996) examined chaotic behaviours of a simple
closed loop system. Wang et al. (2005) proposed a methodology to analyse dynamic
behaviours of a system to achieve better lot-sizing decisions. Schmitz et al. (2002)
surveyed chaotic behaviours on discrete manufacturing systems. Alfaro and Sepulveda
(2006) proposed a step by step methodology to estimate system sensitiveness to initial
conditions. Papakostas and Mourtzis (2007) analysed the adaptability of a manufacturing
system subjected to demand fluctuations.

4.1.3 Bifurcation diagrams

Bifurcation diagrams allow the comprehension of how the long-term behaviours of a
system change, as particular variables fluctuate. Due to their ability to capture unstable
and unexpected behavioural changes and to identify critical system parameters that lead
to an unwanted change in the behaviours, these diagrams are considered an effective
methodology and have been implemented in a number of studies that investigate the
sensitivity of manufacturing systems’ performance on design changes (Papakostas et al.,
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2009). Scholz-Reiter et al. (2002) studied irregular behaviours of a production systemwhich
was assumed to be a part of more complex facility. A set of possible control methods were
suggested which are valid for different levels ofWIP by using nonlinear dynamics methods.
Papakostas and Mourtzis (2007) investigated the dependence of production rate of a steel
production company on specific values of model parameters.

4.1.4 Limitations of methods derived from chaos and nonlinear dynamics theory

According to Efthymiou et al. (2016), the methods based on chaos and nonlinear dynamics
theory offer valuable understandings of the system behaviours, visualises the effect of
system parameters on the key performance indicators, and depicts the sensitivity of the
system. However, a set of limitations has been flagged in the related literature. Modern
manufacturing systems often exhibit stochastic events (e.g., machine breakdowns) rather
than deterministic chaos. However, tools and methods developed based on this theory, are
not able to capture and analyse such stochastic events (Efthymiou, 2013). Moreover, only
maximal Lyapunov exponents testing provides a quantitative measure for chaos within the
manufacturing system, other methodologies are limited and offer only schematic analysis
for the dynamic system behaviours (Efthymiou et al., 2012). Furthermore, the approaches
used for approximation of the Lyapunov exponents require relatively big datasets and they
are highly sensitive to the fluctuations in the external factors such as measurement errors
and noise (Efthymiou, 2013). In summary, theory of chaos and nonlinear dynamics can
be considered a highly valuable tool in behavioural analysis of manufacturing systems.
However, these methods require a costly measurement phase and they are not able to
capture stochastic complexity sources, therefore it is still questionable as to whether these
tools are a practical solution for real industrial environments.

4.2 Information theory

Information theory, principally proposed in Shannon’s study of communication theory
(please see its revised version in Shannon (2001), considers entropy as the degree of
ambiguity associated to the outcomes of a random experiment. In the manufacturing
domain, this approach is used to capture the following symptoms:

1 Scheduling and observation based information content of resource or queue states.

2 Deviation between scheduled and actual states of the resources.

3 Uncertainty in handling product variety with the context of risk factors related to the
operator choices.

4 Unpredictability of manufacturing processes and manufacturing performance
indicators.

4.2.1 Shannon entropy

In manufacturing domain, Shannon entropy is used to quantify the uncertainty of
identifying the required information to define the state of a manufacturing system or its
components. In this context, states of resources can be defined subjectively (e.g., busy,
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idle and breakdown, etc.). The probability of states can be measured based on scheduling
information (static complexity) and real time observations (dynamic complexity). Frizelle
and Woodcock (1995) used Shannon entropy to optimise operation strategies of a
manufacturing enterprise. Static complexity was measured through focusing chiefly on
queue lengths, whereas dynamic complexity was calculated based on observed states
of manufacturing resources (i.e., idle, busy or failed). Deshmukh (1998) enumerated
the factors affecting the static complexity of a manufacturing system to define a
static complexity metric related to processing requirements and machine capabilities.
In the paper, the variation in static complexity was investigated in terms of part
resemblance, system volume and product design alterations. Frizelle and Suhov (2001)
proposed an entropic complexity measurement to assess the rate of variety in queueing
systems and networks by employing Kolmogorov-Sinai entropy. Calinescu et al. (1998)
proposed a comparison between entropy and questionnaire based complexity assessment
measures. The proposed entropy measure accounted for the following factors: product
structure, the structure of shop or plant, planning and scheduling functions, information
flow and dynamism, and variability and uncertainty of environment. Efstathiou et al.
(2002) presented an expert system to evaluate the decision-making complexity of
system-organisation interactions that used existing company data to compute complexity
and offer recommendations. Frizelle and Suhov (2008) developed a method to assess
dynamic complexity by evaluating the evolution of manufacturing queueing lengths and
resource state conditions in three different case studies.

Shannon entropy is also used to measure complexity related to the deviations between
scheduled and observed resource states. Huaccho Huatuco et al. (2001) investigated
scheduling complexity in a bottle supplier enterprise. Dynamic complexity was assessed by
estimating conditional probabilities associated with deviating scheduling states and it was
found that complexity can be varied with both customer demand changes and organisational
flexibility. Sivadasan et al. (2002) proposed a metric for supplier-customer networks based
on the uncertainty of material and information. This metric is then extended and validated
in (Sivadasan et al., 2006). Wu et al. (2007) surveyed the relationship between operational
complexity and inventory costs. Huaccho Huatuco et al. (2009) proposed a comparison
between five different rescheduling strategies based on their effectiveness in reducing
complexity that arises due to stochastic machine breakdowns. A series of simulations were
performed for this purpose which accounted for: overall information content, variations
between schedules, and mean flow time. Reducing unbalanced machine workloads and
using low disruption strategies were suggested to reduce operational complexity. Sivadasan
et al. (2010) examined the relationship between networks of customers and suppliers,
and operational complexity (e.g., scheduling variations). An increase in the operational
complexity was found to have a significant association with the reduction in the supplier’s
inventory capacity. It was suggested that operational complexity could be better managed
by incorporating: IT systems, shorter scheduling planning and more frequent information
exchanges.

Another implementation of Shannon entropy focuses on the assessment of the
uncertainty in handling increased product variety associated with the risk factors related
to the operator choices. Fujimoto et al. (2003) developed an information theoretic method
to interpret product variety induced complexity arising at the different stages of assembly
system by utilising weighted Shannon entropy. In each assembly station, information
entropy was assumed to originate from two kind of aspects:
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1 variety flowing through a station

2 product varieties adding in the station.

Zhang and Efstathiou (2006) proposed a complexity metric based on the Shannon entropy
for mass customisation in manufacturing systems. The authors pointed out that complexity
arises from inventory management primarily influenced by the number of stock locations
and the number of product variants that are stored in these areas. Zhu et al. (2007) introduced
a measure called ‘operator choice complexity’ to pursue optimal assembly sequences
in mixed-model assembly lines by reducing process sequence complexity which in turn
reduced system complexity. Zhu et al. (2008) surveyed operator choice complexity by
consolidating product mix and process information in mixed model assembly systems, and
provided guidelines for managing complexity at the design phase of such systems. Cho et al.
(2009) developed a quantitative complexity assessment approach for various configurations
of assembly and disassembly stations. The proposed approach uses probability distribution
of information associated with the part processing times, part mix ratios and routings.Wang
and Hu (2010) investigated the relationship between system throughput and complexity
associated with human related factors such as operator reaction time and fatigue effects.
According to the findings, product variety induced complexity affects the reliability rate
of manufacturing stations and disturbs a station’s throughput. Hu et al. (2008) proposed
a measure for complexity of both assembly systems and their supply chains. Wang et al.
(2011) carried out an optimisation study focusing on the relation between product variation
and complexity in semi-automatic assembly systems. In this study, a novel measure called
relative complexity based on a theoretical model (Makui and Aryanezhad, 2003) was
developed to find out the optimal set of variants to enlarge the market share while reducing
complexity.Wang et al. (2013) extended the previous complexity model (Wang et al., 2011)
and carried out an optimisation study focusing on the configurations of the mixed model
assembly systems.

4.2.2 Kolmogorov complexity and Lempel-Ziv analysis of finite time series

Kolmogorov complexity is an application of the algorithmic information theory in computer
science, named after Andrey Kolmogorov who first presented this subject in 1963.
According to Kolmogorov’s idea, the complexity of any binary string is the size of the
smallest binary computer program that can reproduce this string on the universal turing
machine and then halt (Ming and Vitányi, 2014). Lempel-Ziv complexity metric (Lempel
and Ziv, 1976), on the other hand, is a non-parametric scale of finite sequences and it has
been used in several applications, including coding and lossless data compression. This
metric is presented based on Kolmogorov’s axioms and it is associated to the quantity of
diverse sub-strings and the proportion of their existence along a given sequence (Efthymiou
et al., 2014). In recent years, this metric has been applied to manufacturing systems
and manufacturing supply networks to evaluate the irregularity of manufacturing KPIs
(Chryssolouris et al., 2013; Efthymiou et al., 2014; Mourtzis et al., 2013). One of the
pioneer works presented by Efthymiou et al. (2014), investigated the unpredictability of
performance indicators in manufacturing systems. In the study, the fluctuations in the
performance time series of critical manufacturing indicators generated through discrete
event simulations, were studied by employing Lempel-Ziv complexity measure, then
an overall complexity indicator was calculated through assessing weighted average
Lempel-Ziv complexity.
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4.2.3 Computational mechanics

Computational mechanics concerns the issues of pattern, structure, and organisation and
producing a model of a hidden process generated from observed behaviours (Shalizi and
Crutchfield, 2001). This approach offers an information-theoretic methodology to find
optimal causal models of stochastic processes. Vrabič and Butala (2011) chiefly adopted
this approach in manufacturing systems by employing an information theoretic measure
to assess prediction efficiency of manufacturing processes. In the work, complexity was
represented by statistical complexity, defined as the quantity of historical memory collected
during the past processes. This approach differs from other entropy based measures as it
relates unpredictability with complexity.

4.2.4 Limitations of information-theoretic measures

Information theoretic measures propose an objective way for quantifying both static and
dynamic complexity of manufacturing systems. Nevertheless, a set of problems bound
back the applicability of the information theory. According to Efthymiou et al. (2016),
information theoretic measures are insufficient to link complexity with the manufacturing
system performance. Moreover, information theoretic complexity measures provide a
single complexity value which provides an insufficient level of granularity to determine
where efforts should be focused to make improvements. On the other hand, information
theory includes two essential assumptions which may be critical in terms of accuracy. Kim
(1999) explains the first assumption as; “complexity is a universal quality that exists, to
some degree in all objects, and there is a uniform metric for measuring the complexity of a
system”. Klir (1985) argued this statement and stated that describing the complexity as an
inherent attribute of an object is not purposeful from an operational point of view. The other
assumption states that variables of a system are considered independent. According to the
researchers (Badrous, 2011; ElMaraghy, 2005; ElMaraghy et al., 2012), this assumption
is not true for real systems which limits the applicability and accuracy of the approach.
Similarly, Kim (1999) and ElMaraghy et al. (2012) pointed out that information theory
complicates measurement for large systems and assumption of validity of independent
states should be replaced with the conditional entropy approach. Furthermore, as there is a
subjectivity associatedwith the selection of resource and queue states, information theoretic
measures may struggle to explain perceived complexity, e.g., interactions between human
and machine. Issues to be addressed in information theory, include the impact of defective
information, measurement cost for dynamic complexity assessment, conversion of the
results into meaningful information, and recommendations for issues on manufacturing
system design and management (Alkan et al., 2016c). According to Smart et al. (2013),
accuracy in probability estimation, interdependency assumption, sample quality and long
data recording are the most important factors to be taken care of for those who start
out to gather data for measuring structural and operational complexity based on entropic
approach. Moreover, further investigation is still required to enhance the predictive
capabilities of the information theoretic measures. As an example, Kolmogorov complexity
Lempel-Ziv analysis method heavily depended on the observed performance time series
length (Efthymiou et al., 2014). Also, this approach require a common time series length for
the comparison of dynamic complexity of different manufacturing systems, which may not
be the case inmany situations (Efthymiou et al., 2016). Computational mechanics approach,
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on the other hand, suffers in terms of practicality, as it requires relatively big amount of
data necessary to analyse dynamic complexity.

4.3 Heuristics

Heuristics based complexity assessment approaches are close to industrial practice where
they attempt to capture the overall information content of a production system using
user-subjective or counting based information collection techniques. These methods can be
a valuable solution when data availability is limited, i.e., very early design stages.

4.3.1 Enumeration

Approaches using enumeration relate complexity to the number of system, product and
process related elements, such as: quantity and diversity of resources and manufacturing
tasks as well as the number of demand changes. Sarkis (1997), studied the relationship
between complexity and productivity of a flexible manufacturing system (FMS). In the
study, complexity is considered as the summation of the total number of installed industrial
robots and numerically controlled machines. According to the results, a continuous drop
in productivity performance is observed as the system’s complexity increases. This is
attributed to an increase in the number of devices, which correspondingly increases the
required efforts (i.e., scheduling and transportation) to operate these devices, which in
turn dramatically impacts the efficiency of the system. Kim (1999) studied the effects of
product variety over system complexity by proposing a set of metrics consisting of three
dynamic and static complexity sources:

1 Relationships between system components described as the quantity of flow paths,
number of crossings in the flow paths, cumulative part travel distance, number of
combinations of product and machine match.

2 Inherent properties of system components, such as: number of elementary system
components and complexity of each elementary component.

3 People related issues, such as: process improvements, information accessibility,
number of suggestions, etc.

Gabriel (2007) proposed a static complexity measure called internal static manufacturing
complexity (ISMC). The ISMC is designed as a function of distinct number of manufactured
components, number of work centres, the volume of production, and the commonality
between different product routes. Another enumeration methodology, the complexity cube,
is a vector based complexity assessment approach developed by Windt (2008).

4.3.2 Coding and classification

The research group at the University of Windsor, Canada has proposed a coding and
classification system which aims at quantifying time-independent complexity based on
assessing the key aspects of manufacturing systems. ElMaraghy and Urbanic (2003)
considered complexity as a combination of three key factors:
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1 the absolute amount of information

2 the variety of information

3 the information content linked to the exertion required to manufacture a machining
feature of a product.

Product complexity is represented by the product complexity index, which is calculated by
counting different design parameters such as; quantity of features, quantity of inspection
checks and diversity of part elements, etc. Process complexity is defined as a function of the
product design, the volume requirements, planning horizon and the work environment. The
proposedmethodology can, according to its authors, be used in any design situation through
selection of the suitable facets of the main product and process elements. The original
approach was extended by Urbanic and ElMaraghy (2006), to cover complexity in manual
manufacturing operations by taking some facets of cognitive complexity related to operator
perception into account. Furthermore, ElMaraghy et al. (2005) developed an indices
based method for manufacturing systems that utilises heuristics and information theory in
which availability of each component is taken into consideration. The metric consists of
different complexity fields representing inherent structural and operational characteristics
of classes of entities, such as: machines, buffers, material handling systems (MHS) and
operators. Later, Kuzgunkaya and ElMaraghy (2006) adapted a hybrid approach to evaluate
configuration complexity of reconfigurable manufacturing systems and developed a new
measure. The proposed metric is calculated based on information theory, where the state
probabilities are defined based on the reliability of different system modules, such as:
machines, buffers and MHS. ElMaraghy et al. (2010) and further Samy and ElMaraghy
(2012), extended the original classification and coding approach to include assembly
oriented static complexity sources of various manufacturing system resources, including
machines, buffers and MHSs.

4.3.3 Limitations of heuristics based approaches

Due to their subjective nature, heuristics based approaches provide a weaker vision of
manufacturing system complexity and they are unable to analyse complicated connections
within a system (ElMaraghy et al., 2012). These metrics are heavily dependent on the
industrial domain or specific focus that they are designed for, thus, the applicability of
heuristics based approaches over different types of production systems and focuses is often
limited. In conclusion, heuristics based approaches provide an intuitive view regarding
complexity associated with the physical situation, however, due to its subjective nature, it
is debatable as to whether these measures reflect overall system complexity accurately.

4.4 Graph theory based metrics

Graph theory provides a basis for investigating the entities and their relationships within
a system (Kreimeyer, 2009). In recent years, a number of works (Alkan et al., 2016c;
Chryssolouris et al., 2013; Jenab and Liu, 2010; ElMaraghy et al., 2014) that have direct and
indirect utilisation of the graph and network theory in the assessment of physical aspects
of manufacturing system complexity, have been proposed. Chryssolouris et al. (2013)
proposed a complexity measure called network complexity, in which graph theory is used
to produce adjacency matrix which represents the connection between product, process,
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and resource domains. The vertex degree is then used to assess the coupling between these
domains. ElMaraghy et al. (2014) developed a complexity model based on the graph theory
which incorporates information content of the system represented by characteristics of its
layout.

4.5 Fluid dynamics analogy

The fluid dynamics analogy in the manufacturing domain is an analytical framework which
has been used previously in modelling of system performance indicators and management
of scheduling issues (Avram et al., 1995; Dai, 1995; Weiss, 1999). In manufacturing
systems, the fluid dynamics analogy is chiefly used to analyse manufacturing flow
turbulence. Efthymiou et al. (2009) used this analogy as a theoretical background and
introduced the Reynold number concept to manufacturing systems which aims to identify
the transition regime between steady and turbulent manufacturing operations in different
work-flow conditions. Moreover, similar Reynold number concepts have been used
in assessing complexity in manufacturing systems (Schleifenbaum et al., 2009) and
supply chains (Romano, 2009). Although, fluid dynamics analogy can be considered
as a promising approach for detection of critical areas that contribute to turbulence in
production, it is still a premature practice and requires further investigations (Efthymiou
et al., 2016).

4.6 Surveys

In the literature, there are a number of papers focusing on both manufacturing system
complexity and complexity arising due to user-system interactions by employing structured
questionnaires and interviews. Calinescu et al. (1998) proposed a metric based on Meyer
and Foley Curley’s management of software development framework described in Meyer
and Curley (1995). Data used in this study is gathered by questionnaires at different
levels of hierarchy within the selected company. Mattsson et al. (2011) developed
a questionnaire based complexity index, namely: CXI, where users assess production
complexity, subjectively. Questionnaire parameters are categorised into five main groups:
product/variants, process methods, station layout, equipment, and organisation and
environment complexity sources. Falck et al. (2012) proposed an assessment model for
assembly task complexity based on the interview study suggesting criteria to identify both
low and high assembly complexity. The grade of fulfilment of the aforementioned criteria
is used to reflect the degree of production complexity. A similar study which is proposed by
Mattson (2013), aims to define manufacturing complexity based on a series of structured
interviews in which, subjective opinions of human workers regarding product variants,
work content, layout, tools and work instructions are collected. Questionnaires, surveys
and interviews attempt to provide insights on how humans perceive manufacturing systems
during their life-cycle. They can be used to analyse bottlenecks and to get indications
of potential improvements by flagging the interrelating complexity concerns. Although,
survey based approaches can capture the perceived level of complexity, these approaches
cannot be used in the evaluation of system designs since no physical mock-up or process
trials are available. Also, they are limited to questionnaire-stage and their results are
dependent on the subjective interpretation of the interviewees.
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5 Proposed future research directions

The literature review shows an increase in the total number of articles published per
year [Figure 4(a)]; it indicates a growing trend for management and optimisation of
complexity in manufacturing systems. This can again be inferred from Figure 4(b), that in
the last decade, the number of published studies that discuss about complexity evaluation
have increased by more than half when compared to the previous decade. It can be
seen from Figure 4(c), that the importance given by academic community to static and
dynamic complexity is almost equal, however, the slight increase in the focus on static
complexity could be attributed to the fact that it is relatively easier to identify and assess
static complexity. Additionally, it is discernible from Figure 4(d), that almost half of the
publications investigate complexity symptoms associated with operational uncertainties.
This signifies the increased attention given to operational efficiency in scheduling and
planning, and shop floor decision-making in comparison to the other classes of symptoms. It
is also important to note, studies perceiving complexity through system’s physical situation
also gained a significant increase. This indicates the importance of proactive evaluation of
system designs at the conceptual and preliminary design phases. Also, the popularity of
employed methodologies is given in Figure 4(e).

The primary reason for evaluating the complexity of manufacturing systems is to
design and build systems that are diagnosable, predictable and productive. These traits
translate directly into reduced costs due to ease of maintenance, foresight and efficient
use of resources. This paper has presented studies that have been published over the last
two decades that offer methodologies for measuring complexity. Approaches that examine
complexity during the operational phase of manufacturing systems are often costly; they
require large datasets collected by on-site observations and analysed using expert systems.
On the other hand, approaches (i.e., heuristics based approaches) that measure complexity
from the physical situation of manufacturing systems are less successful as the large
amounts of data required are not available at this point of a system’s life-cycle. As a result,
an assessment of complexity cannot, and thus is not, typically made in industry at the
design phase as managers and other key stakeholders require practical efficient methods
for measurement, which are simply not available to them (Gabriel, 2007). Furthermore,
it has been observed that more is learnt about a given system during the process of
measuring complexity than the analysis of the resulting data (Calinescu et al., 1998). This
demonstrates two shortcomings of complexity measurement:

1 A disconnect between complexity science and real manufacturing systems means
that models are usually unable to evaluate the system at the required level of
abstraction, requiring reformulation and thus resulting in non-systemic approaches.

2 Complexity is measured when the system exists in the physical domain, and thus any
measurement or assessment can only have a limited impact for making
improvements.
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Figure 4 Summary of the literature review: (a) the number of published studies per year (from
1995 to 2016) (b) the number of published studies between the time periods of
1995–2005 and 1996–2006 (c) the popularity of complexity type studied: static (0.7312
per study) and dynamic (0.6129 per study) (d) the popularity of class of symptoms
studied: operational uncertainties (0.5376 per study), dynamic behaviours (0.1505 per
study), physical situation (0.2688 per study), human perspectives (0.1290 per study)
(e) the popularity of the method employed: Shannon entropy (0.4409 per study),
Kolmogorov Lempel-Ziv (0.0538 per study), computational mechanics (0.0215 per
study), fluid dynamics (0.0323 per study), maximal Lyapunov exponent (0.0538 per
study), phase space reconstruction (0.0645 per study), bifurcation diagrams (0.0430 per
study), enumeration (0.1075 per study), classification and coding (0.0860 per study),
graph theory (0.0645 per study), surveys (0.1290 per study) (see online version
for colours)

(a)

(b) (c)

(d) (e)
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In addition, many researchers have offered measurements that provide a single value of
complexity for an entire system. However, a manufacturing system is a combination of
multiple sub-systems such as: mechanical, electrical, and control as well as process types
including: manual, semi-automatic and fully-automatic. Thus, models that can decompose
these concepts systematically and capture the data, can accurately measure the complexity
of the system and the sub-systems identifying the source of complexity in the system and
thus focussed efforts for optimisation.

The classical approach to engineering and design in industry has been heavily reliant
either on documents or the minds of designers, engineers and integrators. The paradigm
of model-based engineering (MBE) and data driven approaches has emerged in the last
decade as a direct result of increased computing power at lower costs. In fact, this is
one of the key paradigms of Industry 4.0, although such approaches have been in use
before this term was coined. MBE moves the record of authority from documents to digital
models allowing engineering teams to more readily understand design change impacts,
communicate design intent and analyse a system’s design. However, within the context of
complexity assessment there remain a number of shortcomings of the existing model-based
approach to system’s engineering. Firstly, models are not integrated effectively beyond
their respective phase or engineering domain. This has the consequence that there is limited
transparency as to what impact change would have outside of a given life-cycle phase
resulting in unexpected outcomes, a condition inherent of complex systems. Furthermore,
the limited transparency beyond a given engineering domain, e.g., electrical vs. mechanical,
has a similar consequence. Secondly, the software tools associated with design and
engineering have little to no complexity assessment capabilities within them. As has already
been mentioned, this is not used by industry as an indicator to infer that perhaps costs and
lead-times may increase, or if indeed the complexity is required, then management and
control strategies need to be deployed ahead of time. The first shortcoming identified ties
in with the second in that if a given engineering tool software developer was to take the first
step in having a complexity assessment tool built in, there would be limited value as it would
have trouble translating to adjacent and downstream engineering models. As a consequence
of these shortcomings, the complexity measurement process in industry remains tedious,
time consuming, and generally non-value adding.

Virtual engineering tools are producing vast amounts of datasets which, if streamlined
and integrated, can be used as an input to complexity models. Furthermore, virtual
engineering tools, whereby the data structure is extendible, allows additional factors to
be modelled as more complexity sources are identified and linked. This approach to
complexity measurement has two important benefits over the methodologies presented in
the literature:

1 An assessment of complexity can be made during the design phase so that those
designs deemed excessively complex can be flagged and optimised.

2 The measurement of complexity is automated and integrated within the virtual
engineering tools (or in the case of the cyber-physical systems, data is fed directly
from the machine’s operation) through to the complexity model resulting in reduced
measurement efforts.

It is important to note however that fully objective approaches to complexity measurement
are not always entirely practical. As a result, approaches such as surveys and questionnaires,
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while they are susceptible to the subjectivity of those questioned, still offer valuable
information and such methods can be improved if they follow a systematic approach.

6 Conclusions

The objectives of this paper were threefold. This section examines the outcomes of those
objectives and what conclusions the authors draw from them.

Firstly, the authors identified a need to produce a critical review of complexity
assessment methods for manufacturing systems to address its expected rise as industry
enters the fourth industrial revolution. Accordingly, this work has presented:

1 A taxonomy which is comprehensive and captures all complexity assessment
methodologies that the authors have been able to identify from a structured literature
review.

2 A classification of complexity symptoms into four groups that are mapped to
assessment methods.

The conclusion drawn from this part of the work is that there are many methods and
there is limited work that addresses how they can be linked to specific industrial needs.
Furthermore, industrial methods used to assess complexity today are not accurate, being
largely subjective and not systemic. Therefore, the authors argue that there is a need to
educate industrial practitioners on the methods available for complexity assessment based
on symptoms observed within an organisation.

The second objective of the work revolved around identifying how assessment methods
could be linked to different phases of the engineering life-cycle of a production system.
At different phases, different types of data exist at different levels of granularity and
maturity. However, despite the links proposed by the authors, it is concluded that the
cultivation of complexity experts within industry is an important facilitator of assessment.
To determine both the engineering data available at a given life-cycle phase and the
appropriate complexity assessment method is difficult to encode within rules or best
practice because this remains unclear resulting in uncertainty during method selection. Due
to the relatively recent emergence of complexity assessment in industry, such activities
need to be supported through appropriate tools and methods highlighting a clear direction
for engineering software tool developers.

The final objective of this work was to synthesise literature of the last two decades
that addressed complexity assessment in manufacturing into a single, referenceable table
for complexity assessment practitioners that exist both within industrial and academic
environments. The consolidated data was analysed for trends which found that there is a:

1 Growing trend for complexity management and optimisation in manufacturing
systems.

2 Heavy focus on complexity assessment associated with operational uncertainties.

In summary, the measurement or assessment of complexity is driven by identifying that
a system is complex based on a set of symptoms. The appropriate assessment method is
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selected based on the data available often aligned to an engineering phase. Appropriate and
correct execution of an assessment method is derived from referencing a synthesis of the
literature of the last two decades within the domain. Ultimately, assessment is an important
phase in the complexity life-cycle so that critical design parameters of manufacturing
systems can be analysed, verified and optimised. However, correct and accurate assessment
is not present within industry and thus it is the role of academics to transform complexity
from a scientific exercise to something that can be practiced and administered by industry.
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Mattsson, S., Gullander, P., Harlin, U., Bäckstrand, G., Fasth, A. and Davidsson, A. (2012) ‘Testing
complexity index – a method for measuring perceived production complexity’, Procedia CIRP,
Vol. 3, No. 1, pp.394–399.
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