11 research outputs found

    Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3.

    Get PDF
    RATIONALE: Recent work in animal models and humans has demonstrated the presence of organ-specific progenitor cells required for the regenerative capacity of the adult heart. In response to tissue injury, progenitor cells differentiate into specialized cells, while their numbers are maintained through mechanisms of self-renewal. The molecular cues that dictate the self-renewal of adult progenitor cells in the heart, however, remain unclear. OBJECTIVE: We investigate the role of canonical Wnt signaling on adult cardiac side population (CSP) cells under physiological and disease conditions. METHODS AND RESULTS: CSP cells isolated from C57BL/6J mice were used to study the effects of canonical Wnt signaling on their proliferative capacity. The proliferative capacity of CSP cells was also tested after injection of recombinant Wnt3a protein (r-Wnt3a) in the left ventricular free wall. Wnt signaling was found to decrease the proliferation of adult CSP cells, both in vitro and in vivo, through suppression of cell cycle progression. Wnt stimulation exerted its antiproliferative effects through a previously unappreciated activation of insulin-like growth factor binding protein 3 (IGFBP3), which requires intact IGF binding site for its action. Moreover, injection of r-Wnt3a after myocardial infarction in mice showed that Wnt signaling limits CSP cell renewal, blocks endogenous cardiac regeneration and impairs cardiac performance, highlighting the importance of progenitor cells in maintaining tissue function after injury. CONCLUSIONS: Our study identifies canonical Wnt signaling and the novel downstream mediator, IGFBP3, as key regulators of adult cardiac progenitor self-renewal in physiological and pathological states

    Adult Cardiac Progenitor Cell Aggregates Exhibit Survival Benefit Both In Vitro and In Vivo

    Get PDF
    Background: A major hurdle in the use of exogenous stems cells for therapeutic regeneration of injured myocardium remains the poor survival of implanted cells. To date, the delivery of stem cells into myocardium has largely focused on implantation of cell suspensions. Methodology and Principal Findings: We hypothesize that delivering progenitor cells in an aggregate form would serve to mimic the endogenous state with proper cell-cell contact, and may aid the survival of implanted cells. Microwell methodologies allow for the culture of homogenous 3D cell aggregates, thereby allowing cell-cell contact. In this study, we find that the culture of cardiac progenitor cells in a 3D cell aggregate augments cell survival and protects against cellular toxins and stressors, including hydrogen peroxide and anoxia/reoxygenation induced cell death. Moreover, using a murine model of cardiac ischemia-reperfusion injury, we find that delivery of cardiac progenitor cells in the form of 3D aggregates improved in vivo survival of implanted cells. Conclusion: Collectively, our data support the notion that growth in 3D cellular systems and maintenance of cell-cell contact improves exogenous cell survival following delivery into myocardium. These approaches may serve as a strategy to improve cardiovascular cell-based therapies

    Aggregate survival tests <i>in vitro</i>.

    No full text
    <p><b>A)</b> Subsets of microwell arrays with 2D monolayer of cell culture (2D) and aggregates of three sizes (S, M, and L). Hydrogen peroxide and anoxia/reoxygenation treatments were employed to induce cell death. EthD (red) and DAPI (blue) staining were performed for the determination of cell death. <b>B)</b> Quantification of dead CSP cells in 2D single layer culture and aggregates with variable diameters subjected to 200 µM-hydrogen peroxide treatment using EthD/DAPI fluorescent intensity ratio. Data were normalized to the vehicle groups of 2D monolayer culture and aggregates in three sizes. <b>C)</b> Quantification of dead CSP cells in 2D single layer culture and aggregates with variable diameters subjected to anoxia/reoxygenation using EthD/DAPI fluorescent intensity ratio. Data were normalized to the vehicle groups of 2D monolayer culture and aggregates in three sizes.</p

    Cell patterning and aggregate formation inside microwells.

    No full text
    <p><b>A)</b> Cell patterning. Cells were localized inside the microwells. <b>B)</b> After cell seeding, the cells in the microwell array were cultured in a petri dish and aggregates formed within 24 h. <b>C)</b> Once the aggregate formation is complete inside the microwells, they can be stained. <b>D)</b> Aggregates can be imaged inside microwells. <b>E)</b> Aggregates can be easily released from the microwells by gentle flushing with media for other applications.</p

    Aggregate integrity and survival in fluidic manipulations.

    No full text
    <p><b>A)</b> Aggregates formed in microwells can be easily flushed out from the microwell and centrifuged while remaining intact. <b>B)</b> Aggregate can be easily passed through a 30G needle without loosing integrity. <b>C)</b> A representative DAPI/EthD fluorescent image of aggregates before injection. <b>D)</b> A representative DAPI/EthD fluorescent image of aggregates after injection. <b>E)</b> Quantification of dead CSP cells in aggregates passing a 30G needle using EthD/DAPI fluorescent intensity ratio. (All bars represent 100 µm).</p

    CSP cell survival <i>in vivo</i> following cardiac injury.

    No full text
    <p><b>A)</b> Protocol to measure the <i>in vivo</i> survival of CSP aggregates and suspensions. <b>B)</b> Representative serial bioluminescence images (BLI) of mice injected with CSP cell aggregates and CSP single cell suspensions. <b>C)</b> Percentage of CSP cell survival measured with BLI.</p
    corecore