11 research outputs found

    Interpregnancy interval raise odds of adverse perinatal outcome in high fertility region Mewat, Haryana

    Get PDF
    Background: Objective of current study was to study association between various interpregnancy intervals and adverse perinatal outcome (preterm birth, low birth weight, small for gestational age) and to come out with optimum interpregnancy interval.Methods: Retrospective cross sectional study in which 400 meo women (para 2 to para 5) fulfilling inclusion and exclusion criteria having diverse interpregnancy intervals were selected. Statistical analysis was done using SPSS. We used multivariate logistic regression analysis to assess the risk of adverse perinatal outcome.Results: As compared with infants conceived within a time period of16 to 48 months after a live birth, infants conceived within16 months after a live birth had odds ratios of 2.1 (95% CI 1.3 to 3.5) for low birth weight, 2.2 (95% CI 1.3 to 3.8) for preterm birth,and 2.3 (95% CI 1.4 to 3.8) for smallsize for gestational age; infants conceived more than 48 months after a live birth had odds ratios of 1.88 (95% CI 1.1 to 3.1), 1.96 (95% CI1.1 to 3.4), and 2.08 (95% CI 1.2 to3.6) for these three adverse outcomes, respectively; P value <0.05.Conclusions: We came to conclusion that interpregnancy interval of 16 - 48 months is the optimal interval carrying least risk of adverse perinatal outcomes and both short as well as long interpregnancy intervals are significantly associated with birth of preterm, low birth weight and small for gestational age babies. Counselling regarding optimal interpregnancy interval and methods of contraception can go a long way in reducing adverse perinatal outcome

    Bacterial plant biostimulants: A sustainable way towards improving growth, productivity, and health of crops

    Get PDF
    This review presents a comprehensive and systematic study of the field of bacterial plant biostimulants and considers the fundamental and innovative principles underlying this technology. Plant biostimulants are an important tool for modern agriculture as part of an integrated crop management (ICM) system, helping make agriculture more sustainable and resilient. Plant biostimulants contain substance(s) and/or microorganisms whose function when applied to plants or the rhizosphere is to stimulate natural processes to enhance plant nutrient uptake, nutrient use efficiency, tolerance to abiotic stress, biocontrol, and crop quality. The use of plant biostimulants has gained substantial and significant heed worldwide as an environmentally friendly alternative to sustainable agricultural production. At present, there is an increasing curiosity in industry and researchers about microbial biostimulants, especially bacterial plant biostimulants (BPBs), to improve crop growth and productivity. The BPBs that are based on PGPR (plant growth-promoting rhizobacteria) play plausible roles to promote/stimulate crop plant growth through several mechanisms that include (i) nutrient acquisition by nitrogen (N2) fixation and solubilization of insoluble minerals (P, K, Zn), organic acids and siderophores; (ii) antimicrobial metabolites and various lytic enzymes; (iii) the action of growth regulators and stress-responsive/induced phytohormones; (iv) ameliorating abiotic stress such as drought, high soil salinity, extreme temperatures, oxidative stress, and heavy metals by using different modes of action; and (v) plant defense induction modes. Presented here is a brief review emphasizing the applicability of BPBs as an innovative exertion to fulfill the current food crisis

    Production of Nutrient-Enriched Vermicompost from Aquatic Macrophytes Supplemented with Kitchen Waste: Assessment of Nutrient Changes, Phytotoxicity, and Earthworm Biodynamics

    No full text
    Vermicompost is an organic fertilizer rich in nutrients, beneficial microbes, and plant growth hormones that not only enhances the growth of crops but also contributes to the improvement in the physicochemical and biological properties of the soil. However, its lower nutrient content makes it less preferable among farmers and limits its applicability. Here, we investigate, for the first time, nutrient enrichment of vermicompost by supplementing the free-floating macrophyte biomass with cow manure and organic nutrient supplements (eggshell, bone meal, banana peel, and tea waste). Free-floating macrophytes are aquatic plants that are found suspended on the water surface, playing a significant role in the structural and functional aspects of aquatic ecosystems. However, uncontrolled proliferation of these macrophytes endangers these ecosystems, having both economic and ecological implications; therefore, they need to be managed. Results showed an enhanced total nitrogen (2.87%), total phosphorus (0.86%), total potassium (3.74%), and other nutrients in vermicompost amended with cow manure and nutrient supplements. Highest biomass gain (710&ndash;782 mg), growth rate (11.83&ndash;13.04 mg), and reproduction rate (3.34&ndash;3.75 cocoons per worm) was also observed, indicating that amending bulking agent and nutrient supplements not only enhance the nutrient content of the final product but also improve overall earthworm activity. The stability and maturity of vermicompost, as indicated by C/N (&lt;20) and Germination Index (&gt;80), indicates that vermicompost obtained is suitable for agricultural applications. The study concluded that amendment of cow manure and organic nutrient supplements results in producing mature and nutrient-enriched vermicompost suitable for sustainable agricultural production

    Production of Nutrient-Enriched Vermicompost from Aquatic Macrophytes Supplemented with Kitchen Waste: Assessment of Nutrient Changes, Phytotoxicity, and Earthworm Biodynamics

    No full text
    Vermicompost is an organic fertilizer rich in nutrients, beneficial microbes, and plant growth hormones that not only enhances the growth of crops but also contributes to the improvement in the physicochemical and biological properties of the soil. However, its lower nutrient content makes it less preferable among farmers and limits its applicability. Here, we investigate, for the first time, nutrient enrichment of vermicompost by supplementing the free-floating macrophyte biomass with cow manure and organic nutrient supplements (eggshell, bone meal, banana peel, and tea waste). Free-floating macrophytes are aquatic plants that are found suspended on the water surface, playing a significant role in the structural and functional aspects of aquatic ecosystems. However, uncontrolled proliferation of these macrophytes endangers these ecosystems, having both economic and ecological implications; therefore, they need to be managed. Results showed an enhanced total nitrogen (2.87%), total phosphorus (0.86%), total potassium (3.74%), and other nutrients in vermicompost amended with cow manure and nutrient supplements. Highest biomass gain (710–782 mg), growth rate (11.83–13.04 mg), and reproduction rate (3.34–3.75 cocoons per worm) was also observed, indicating that amending bulking agent and nutrient supplements not only enhance the nutrient content of the final product but also improve overall earthworm activity. The stability and maturity of vermicompost, as indicated by C/N (80), indicates that vermicompost obtained is suitable for agricultural applications. The study concluded that amendment of cow manure and organic nutrient supplements results in producing mature and nutrient-enriched vermicompost suitable for sustainable agricultural production

    Psychrotolerant <i>Mesorhizobium</i> sp. Isolated from Temperate and Cold Desert Regions Solubilizes Potassium and Produces Multiple Plant Growth Promoting Metabolites

    Get PDF
    Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively

    Data from: Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis

    No full text
    Background: Crocus sativus stigmas form rich source of apocarotenoids like crocin, picrocrocin and saffranal which besides imparting color, flavour and aroma to saffron spice also have tremendous pharmacological properties. Inspite of their importance, the biosynthetic pathway of Crocus apocarotenoids is not fully elucidated. Moreover, the mechanism of their stigma specific accumulation remains unknown. Therefore, deep transcriptome sequencing of Crocus stigma and rest of the flower tissue was done to identify the genes and transcriptional regulators involved in the biosynthesis of these compounds. Results: Transcriptome of stigma and rest of the flower tissue was sequenced using Illumina Genome Analyzer IIx platform which generated 64,604,402 flower and 51,350,714 stigma reads. Sequences were assembled de novo using trinity resulting in 64,438 transcripts which were classified into 32,204 unigenes comprising of 9853 clusters and 22,351 singletons. A comprehensive functional annotation and gene ontology (GO) analysis was carried out. 58.5 % of the transcripts showed similarity to sequences present in public databases while rest could be specific to Crocus. 5789 transcripts showed similarity to transcription factors representing 76 families out of which Myb family was most abundant. Many genes involved in carotenoid/apocarotenoid pathway were identified for the first time in this study which includes zeta-carotene isomerase and desaturase, carotenoid isomerase and lycopene epsilon-cyclase. GO analysis showed that the predominant classes in biological process category include metabolic process followed by cellular process and primary metabolic process. KEGG mapping analysis indicated that pathways involved in ribosome, carbon and starch and sucrose metabolism were highly represented. Differential expression analysis indicated that key carotenoid/apocarotenoid pathway genes including phytoene synthase, phytoene desaturase and carotenoid cleavage dioxygenase 2 are enriched in stigma thereby providing molecular proof for stigma to be the site of apocarotenoid biosynthesis. Conclusions: This data would provide a rich source for understanding the carotenoid/apocarotenoid metabolism in Crocus. The database would also help in investigating many questions related to saffron biology including flower development

    Soil organic carbon pools and carbon management index under different land use systems in North western Himalayas

    No full text
    Current study was conducted to evaluate the effect of important land uses and soil depth on soil organic carbon pools viz. total organic carbon, Walkley and black carbon, labile organic carbon, particulate organic carbon, microbial biomass carbon and carbon management index (CMI) in the north Western Himalayas, India. Soil samples from five different land uses viz. forest, pasture, apple, saffron and paddy-oilseed were collected up to a depth of 1 m (0–30, 30–60, 60–90 cm). The results revealed that regardless of soil depth, all the carbon pools differed significantly (p < 0.05) among studied land use systems with maximum values observed under forest soils and lowest under paddy-oilseed soils. Further, upon evaluating the impact of soil depth, a significant (p < 0.05) decline and variation in all the carbon pools was observed with maximum values recorded in surface (0–30 cm) soils and least in sub-surface (60–90 cm) layers. CMI was higher in forest soils and lowest in paddy-oilseed. From regression analysis, a positive significant association (high R-squared values) between CMI and soil organic carbon pools was also observed at all three depths. Therefore, land use changes and soil depth had a significant impact on soil organic carbon pools and eventually on CMI, which is used as deterioration indicator or soil carbon rehabilitation that influences the universal goal of sustainability in the long run
    corecore