434 research outputs found

    In memoriam Niels Reeh

    Get PDF

    Prevalence of tail biting in pigs and associations to carcass condemnations - a Finnish pilot study

    Get PDF
    The aim of this study was to investigate the prevalence of tail biting in Finland and the relationship between tail biting and carcass condemnation

    Temperature and Tree Size Explain the Mean Time to Fall of Dead Standing Trees across Large Scales

    Get PDF
    Dead standing trees (DSTs) generally decompose slower than wood in contact with the forest floor. In many regions, DSTs are being created at an increasing rate due to accelerating tree mortality caused by climate change. Therefore, factors determining DST fall are crucial for predicting dead wood turnover time but remain poorly constrained. Here, we conduct a re-analysis of published DST fall data to provide standardized information on the mean time to fall (MTF) of DSTs across biomes. We used multiple linear regression to test covariates considered important for DST fall, while controlling for mortality and management effects. DSTs of species killed by fire, insects and other causes stood on average for 48, 13 and 19 years, but MTF calculations were sensitive to how tree size was accounted for. Species’ MTFs differed significantly between DSTs killed by fire and other causes, between coniferous and broadleaved plant functional types (PFTs) and between managed and unmanaged sites, but management did not explain MTFs when we distinguished by mortality cause. Mean annual temperature (MAT) negatively affected MTFs, whereas larger tree size or being coniferous caused DSTs to stand longer. The most important explanatory variables were MAT and tree size, with minor contributions of management and plant functional type depending on mortality cause. Our results provide a basis to improve the representation of dead wood decomposition in carbon cycle assessments

    Importance of vegetation dynamics for future terrestrial carbon cycling

    Get PDF
    Terrestrial ecosystems currently sequester about one third of anthropogenic CO2_{2} emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2_{2} by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. Weapply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios.Wefound that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally.Weconclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by biome shifts, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies

    Morphine-3-glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression

    Get PDF
    Morphine-3-glucuronide (M3G), the main metabolite of morphine, has been implicated in the development of tolerance and of opioid-induced hyperalgesia, both limiting the analgesic use of morphine. We evaluated the acute and chronic effects of M3G and morphine as well as development of antinociceptive cross-tolerance between morphine and M3G after intrathecal administration and assessed the expression of pain-associated neurotransmitter substance P in the spinal cord. Sprague-Dawley rats received intrathecal M3G or morphine twice daily for 6 days. Nociception and tactile allodynia were measured with von Frey filaments after acute and chronic treatments. Substance P levels in the dorsal horn of the spinal cord were determined by immunohistochemistry after 4-day treatments. Acute morphine caused antinociception as expected, whereas acute M3G caused tactile allodynia, as did both chronic M3G and morphine. Chronic M3G also induced antinociceptive cross-tolerance to morphine. M3G and morphine increased substance P levels similarly in the nociceptive laminae of the spinal cord. This study shows that chronic intrathecal M3G sensitises animals to mechanical stimulation and elevates substance P levels in the nociceptive laminae of the spinal cord. Chronic M3G also induces antinociceptive cross-tolerance to morphine. Thus, chronic M3G exposure might contribute to morphine-induced tolerance and opioid-induced hyperalgesia.Peer reviewe

    First genome-wide association study on rocuronium dose requirements shows association with SLCO1A2

    Get PDF
    Background: Rocuronium, a common neuromuscular blocking agent, is mainly excreted unchanged in urine (10-25%) and bile ( 70%). Age, sex, liver blood flow, smoking, medical conditions, and ethnic background can affect its pharmacological actions. However, reasons for the wide variation in rocuronium requirements are mostly unknown. We hypothesised that pharmacogenetic factors might explain part of the variation. Methods: One thousand women undergoing surgery for breast cancer were studied. Anaesthesia was maintained with propofol (50-100 mg kg(-1) min(-1)) and remifentanil (0.05-0.25 mg kg(-1) min(-1)). Neuromuscular block was maintained with rocuronium to keep the train-of-four ratio at 0-10%. DNA was extracted from peripheral blood and genotyped with a next-generation genotyping array. The genome-wide association study (GWAS) was conducted using an additive linear regression model with PLINK software. The FINEMAP tool and data from the Genotype-Tissue Expression project v8 were utilised to study the locus further. Results: The final patient population comprised 918 individuals. Of the clinical variables tested, age, BMI, ASA physical status, and total dose of propofol correlated significantly (all P Conclusions: Genetic variation in the gene SLCO1A2, encoding OATP1A2, an uptake transporter, accounted for 4% of the variability in rocuronium consumption. The underlying mechanism remains unknown.Peer reviewe
    corecore