7 research outputs found

    Placental Invasion into the Small Bowel Intestine Through a Myomectomy Scar

    No full text
    Although extremely rare, uterine damage after hysteroscopic myomectomy sets the precondition for various life-threatening placental attachment disorders like placenta percreta (PP) or scar pregnancy. Due to vast clinical similarities, these terms are often used interchangeably. We report a case of a 47-yr-old patient at 27 wk + 4 d of gestation who presented with rectal bleeding. Clinical history revealed a previous uterine posterior wall myomectomy. The patient received intensive diagnostic work-up including sonography and magnetic resonance imaging. Under the suspicion of a bleeding Meckel diverticulum, an emergency laparotomy was performed. Intraoperatively it was observed that the placental tissue infiltrated the small bowel intestine at the location of the previous myomectomy. The adjacent intestine and the infiltrating placenta were surgically removed. The placenta could be easily detached from the uterus, which is why no hysterectomy was performed. Retrospectively, no radiologic or clinical hints of PP or scar pregnancy were evident before the surgery. Moreover, the pathologic work-up carried out afterwards proved no histopathologic evidence for PP. Our case underlines several clinical and pathologic difficulties. First, invasive placenta disorders including infiltration of intestinal organs have to be considered even after minor surgical interventions such as myomectomy. Second, clinical presentation is extremely variable and sometimes misleading, depending on the localization and the type of invasion. Our case underlines the importance of histopathologic work-up for distinguishing between various placenta attachment disorders such as PP and scar pregnancy. Given the large overlap in clinical presentation, pathophysiology and definition, we propose that the current definitions for PP and scar pregnancy have to be carefully reevaluated and broadened

    Loss of the SWI/SNF-ATPase subunit members SMARCF1 (ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in oesophageal adenocarcinoma

    No full text
    BackgroundThe SWI/SNF complex is an important chromatin remodeler, commonly dysregulated in cancer, with an estimated mutation frequency of 20%. ARID1A is the most frequently mutated subunit gene. Almost nothing is known about the other familiar members of the SWI/SNF complexes, SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1), in oesophageal adenocarcinoma (EAC).MethodsWe analysed a large cohort of 685 patients with EAC. We used four different antibodies to detect a loss-of-protein of ARID1A BRM, BRG1 and INI1 by immunohistochemistry and correlated these findings with molecular and clinical data.ResultsLoss of ARID1A, BRG1, BRM and INI1 was observed in 10.4, 3.4, 9.9 and 2% of EAC. We found a co-existing protein loss of ARID1A and BRM in 9.9% and of ARID1A and BRG1 in 2.2%. Patients with loss of ARID1A and TP53 wildtype EACs showed a shortened overall survival compared with AIRDA1A-positive tumours [median overall survival was 60.1months (95%CI 1.2-139.9months)] in patients with ARIDA-1A expression and 26.2months (95%CI 3.7-19.1months) in cases of ARIDA-1A loss (p =0.044). Tumours with loss or expression of ARID1A and TP53 loss were not associated with a difference in survival. Only one tumour revealed high microsatellite instability (MSI-H) with concomitant ARID1A loss. All other ARID1A loss-EACs were microsatellite-stable (MSS). No predictive relevance was seen for SWI/SNF-complex alterations and simultaneous amplification of different genes (PIK3CA, KRAS, c-MYC, MET, GATA6, ERBB2).ConclusionOur work describes, for the first time, loss of one of the SWI/SNF ATPase subunit proteins in a large number of adenocarcinomas of the oesophagus. Several papers discuss possible therapeutic interventions for tumours showing a loss of function of the SWI/SNF complex, such as PARP inhibitors or PI3K and AKT inhibitors. Future studies will be needed to show whether SWI/SNF complex-deficient EACs may benefit from personalized therapy

    GATA binding protein 6 (GATA6) is co-amplified with PIK3CA in patients with esophageal adenocarcinoma and is linked to neoadjuvant therapy

    No full text
    Purpose!#!Driver mutations are typically absent in esophageal adenocarcinoma (EAC). Mostly, oncogenes are amplified as driving molecular events (including GATA6-amplification in 14% of cases). However, only little is known about its biological function and clinical relevance.!##!Methods!#!We examined a large number of EAC (n = 496) for their GATA6 amplification by fluorescence in situ hybridization (FISH) analyzing both primary resected (n = 219) and neoadjuvant treated EAC (n = 277). Results were correlated to clinicopathological data and known mutations/amplifications in our EAC-cohort.!##!Results!#!GATA6 amplification was detectable in 49 (9.9%) EACs of our cohort. We observed an enrichment of GATA6-positive tumors among patients after neoadjuvant treatment (12,3% amplified tumors versus 6,8% in the primary resected group; p = 0.044). Additionally, there was a simultaneous amplification of PIK3CA and GATA6 (p < 0.001) not detectable when analyzing other genes such as EGFR, ERBB2, KRAS or MDM2. Although we did not identify a survival difference depending on GATA6 in the entire cohort (p = 0.212), GATA6 amplification was associated with prolonged overall survival among patients with primary surgery (median overall-survival 121.1 vs. 41.4 months, p = 0.032). Multivariate cox-regression analysis did not confirm GATA6 as an independent prognostic marker, neither in the entire cohort (p = 0.210), nor in the subgroup with (p = 0.655) or without pretreatment (p = 0.961).!##!Conclusions!#!Our study investigates the relevance of GATA6 amplification on a large tumor collective, which includes primary resected tumors and the clinically relevant group of neoadjuvant treated EACs. Especially in the pretreated group, we found an accumulation of GATA6-amplified tumors (12.3%) and a frequent co-amplification of PIK3CA. Our data suggest an increased resistance to radio-chemotherapy in GATA6-amplified tumors

    GATA binding protein 6 (GATA6) is co-amplified with PIK3CA in patients with esophageal adenocarcinoma and is linked to neoadjuvant therapy

    No full text
    Purpose Driver mutations are typically absent in esophageal adenocarcinoma (EAC). Mostly, oncogenes are amplified as driving molecular events (including GATA6-amplification in 14% of cases). However, only little is known about its biological function and clinical relevance. Methods We examined a large number of EAC (n = 496) for their GATA6 amplification by fluorescence in situ hybridization (FISH) analyzing both primary resected (n = 219) and neoadjuvant treated EAC (n = 277). Results were correlated to clinicopathological data and known mutations/amplifications in our EAC-cohort. Results GATA6 amplification was detectable in 49 (9.9%) EACs of our cohort. We observed an enrichment of GATA6-positive tumors among patients after neoadjuvant treatment (12,3% amplified tumors versus 6,8% in the primary resected group; p = 0.044). Additionally, there was a simultaneous amplification of PIK3CA and GATA6 (p < 0.001) not detectable when analyzing other genes such as EGFR, ERBB2, KRAS or MDM2. Although we did not identify a survival difference depending on GATA6 in the entire cohort (p = 0.212), GATA6 amplification was associated with prolonged overall survival among patients with primary surgery (median overall-survival 121.1 vs. 41.4 months, p = 0.032). Multivariate cox-regression analysis did not confirm GATA6 as an independent prognostic marker, neither in the entire cohort (p = 0.210), nor in the subgroup with (p = 0.655) or without pretreatment (p = 0.961). Conclusions Our study investigates the relevance of GATA6 amplification on a large tumor collective, which includes primary resected tumors and the clinically relevant group of neoadjuvant treated EACs. Especially in the pretreated group, we found an accumulation of GATA6-amplified tumors (12.3%) and a frequent co-amplification of PIK3CA. Our data suggest an increased resistance to radio-chemotherapy in GATA6-amplified tumors

    PIK3CA and KRAS Amplification in Esophageal Adenocarcinoma and their Impact on the Inflammatory Tumor Microenvironment and Prognosis

    No full text
    Gene amplifications of PIK3CA or KRAS induce a downstream activation of the AKT-mTOR or RAF-ERK-pathways. Interactions of the active AKT pathway have been implicated in the inflammatory tumor microenvironment. Nothing is known about these interactions or prognostic power in esophageal adenocarcinoma (EAC). We retrospectively analyzed a large cohort of 685 EAC considering KRAS and PIK3CA gene amplification using fluorescence in situ hybridization (FISH) and immunohistochemistry. These results were correlated with clinical and molecular data as well as the inflammatory tumor microenvironment. Amplifications of KRAS were seen in 94 patients (17.1%), PIK3CA amplifications in 23 patients (5.0%). KRAS amplifications significantly correlated with nodal positive patients and poorer overall survival (OS) in the subgroup without neoadjuvant treatment (p = 0.004), coamplifications of Her2 (p = 0.027), and TP53 mutations (p = 0.016). PIK3CA amplifications significantly correlated with a high amount of tumor infiltrating T cells (p 0.003) and showed a tendency to better OS (p = 0.068). A correlation with checkpoint makers (PD-L1, LAG3, VISTA, TIM3, IDO) could not be revealed. Our findings are the first to link the KRAS amplified genotype with lymphonodal positivity and poor prognosis and the PIK3CA-amplified genotype with a T cell-rich microenvironment in EAC. Future studies must show whether these two genotype subgroups can be therapeutically influenced. A dual inhibition of MEK and SHP2T could be effective in the subgroup of KRAS amplified EACs and an immune checkpoint blockade may prove to be particularly promising in the subgroup of PIK3CA-amplified EACs

    Dickkopf-2 (DKK2) as Context Dependent Factor in Patients with Esophageal Adenocarcinoma

    No full text
    Dickkopf-2 (DKK2) has been described as Wnt/beta-catenin pathway antagonist and its expression is mediated by micro RNA-221 (miRNA-221). So far, there is only limited data characterizing the role of DKK2 expression in esophageal cancer. A tissue micro array of 192 patients with esophageal adenocarcinoma was analyzed immunohistochemically for DKK2, miRNA-221 expression by RNA scope, and GATA6 amplification by fluorescence in-situ hybridization. The data was correlated with clinical, pathological and molecular data (TP53, HER2, c-myc, GATA6, PIK3CA, and KRAS amplifications). DKK2 expression was detectable in 21.7% and miRNA-221 expression in 33.5% of the patients. We observed no correlation between DKK2 or miRNA-221 expression and clinico-pathological data DKK2 expression was correlated with TP53 mutations and amplification of GATA6. We did not detect a survival difference in dependence of DKK2 for the total cohort, however, in patients without neoadjuvant treatment DKK2 expression correlated with a prolonged survival (median overall-survival 202 vs. 55 months, p = 0.012) which turned opposite in patients that underwent neoadjuvant treatment. High amounts of miRNA-221 were in trend associated with a prolonged overall-survival (p = 0.070). DKK2 as a Wnt antagonist is associated with prolonged survival in patients without neoadjuvant treatment and changes its prognostic value to the contrary in patients after neoadjuvant therapy. The modulatory effects of neoadjuvant treatment in connection with DKK2 expression are not fully understood, but when considering DKK2 as a tumor marker, it is necessary to see it in the context of neoadjuvant therapy
    corecore