47 research outputs found

    The Logic & Limits of the Exceptional Circumstances Test in Magill and IMS Health

    Get PDF
    In this Article, we show that, in contrast to the Commission\u27s balancing approach in Microsoft, the ECJ\u27s narrow construction of the obligation to license IP under Article 82 of the EC Treaty is based on sound economics and constitutes appropriate public policy. The set of “exceptional circumstances” listed in Magill and IMS Health constitutes a reasonable implementation of the optimal legal standard for the assessment of refusals to licence IP: modified per se legality. In the IP context, an obligation to make property available is a requirement for compulsory licensing. The ECJ test limits compulsory licensing to those situations in which the prospective social benefits of licensing are large, while the negative effects of reducing the incentives to innovate are small. The ECJ test ensures that intervention is restricted to cases where the intervention is still likely to increase social welfare. The Commission\u27s test in Microsoft, being a balancing test, does not. As noted by Professor Gerardin, “balancing ex ante vs. ex post efficiencies is obviously a very difficult process, which even the most sophisticated economists may find daunting. The risk of mistaken decisions is therefore high.

    Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management-implementation for routine inspection (Phase III)

    Get PDF
    This project focused on implementing the 3DOBS technology (developed under Phase I and Phase II) for successful detection, quantification, and visualization of concrete bridge deck distress features at near-highway speeds for routine MDOT inspections. The integration and further re-defining of the 3DOBS methods into MDOT practices was accomplished by assessing 11 bridge decks with an average size of 10,350 square feet. Distress features were categorized according to the Bridge Element Inspection Manual and compared to traditional (visual) element level inspection results. The Great Lakes Engineering Group, LLC worked with the research team to inspect, interpret, report results, and advise on current condition state reporting requirements. The project team also trained MDOT bridge inspectors in the use of the remote sensing equipment, data collection, data processing, and reporting through multiple different training sessions. A cost comparison between 3DOBS and traditional inspection methods was conducted, with 3DOBS costing an average of 92perbridge,ascomparedto92 per bridge, as compared to 39 for traditional methods. For producing standard element level condition state tables, 3DOBS cost more than a traditional inspector, but is still estimated to be less than $100 for an average bridge in this study

    Inosine Enhances Axon Sprouting and Motor Recovery after Spinal Cord Injury

    Get PDF
    Although corticospinal tract axons cannot regenerate long distances after spinal cord injury, they are able to sprout collateral branches rostral to an injury site that can help form compensatory circuits in cases of incomplete lesions. We show here that inosine enhances the formation of compensatory circuits after a dorsal hemisection of the thoracic spinal cord in mature rats and improves coordinated limb use. Inosine is a naturally occurring metabolite of adenosine that crosses the cell membrane and, in neurons, activates Mst3b, a protein kinase that is part of a signal transduction pathway that regulates axon outgrowth. Compared to saline-treated controls, rats with dorsal hemisections that were treated with inosine showed three times as many synaptic contacts between corticospinal tract collaterals and long propriospinal interneurons that project from the cervical cord to the lumbar level. Inosine-treated rats also showed stronger serotonergic reinnervation of the lumbar cord than saline-treated controls, and performed well above controls in both open-field testing and a horizontal ladder rung-walking test. Inosine was equally effective whether delivered intracranially or intravenously, and has been shown to be safe for other indications in humans. Thus, inosine might be a useful therapeutic for improving outcome after spinal cord injury

    Implementation of Unmanned aerial vehicles (UAVs) for assessment of transportation infrastructure - Phase II

    Get PDF
    Technological advances in unmanned aerial vehicle (UAV) technologies continue to enable these tools to become easier to use, more economical, and applicable for transportation-related operations, maintenance, and asset management while also increasing safety and decreasing cost. This Phase 2 project continued to test and evaluate five main UAV platforms with a combination of optical, thermal, and lidar sensors to determine how to implement them into MDOT workflows. Field demonstrations were completed at bridges, a construction site, road corridors, and along highways with data being processed and analyzed using customized algorithms and tools. Additionally, a cost-benefit analysis was conducted, comparing manual and UAV-based inspection methods. The project team also gave a series of technical demonstrations and conference presentations, enabling outreach to interested audiences who gained understanding of the potential implementation of this technology and the advanced research that MDOT is moving to implementation. The outreach efforts and research activities performed under this contract demonstrated how implementing UAV technologies into MDOT workflows can provide many benefits to MDOT and the motoring public; such as advantages in improved cost-effectiveness, operational management, and timely maintenance of Michigan’s transportation infrastructure

    Impact of life stage and duration of exposure on arsenic-induced proliferative lesions and neoplasia in C3H mice

    Get PDF
    Epidemiological studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Previous experimental studies have demonstrated increased incidence of liver, lung, ovary, and uterine tumors in mice exposed to 85 ppm (∌8 mg/kg) inorganic arsenic during gestation. To further characterize age susceptibility to arsenic carcinogenesis we administered 85 ppm inorganic arsenic in drinking water to C3H mice during gestation, prior to pubescence and post-pubescence to compare proliferative lesion and tumor outcomes over a one-year exposure period. Inorganic arsenic significantly increased the incidence of hyperplasia in urinary bladder (48%) and oviduct (36%) in female mice exposed prior to pubescence (beginning on postnatal day 21 and extending through one year) compared to control mice (19 and 5%, respectively). Arsenic also increased the incidence of hyperplasia in urinary bladder (28%) of female mice continuously exposed to arsenic (beginning on gestation day 8 and extending though one year) compared to gestation only exposed mice (0%). In contrast, inorganic arsenic significantly decreased the incidence of tumors in liver (0%) and adrenal glands (0%) of male mice continuously exposed from gestation through one year, as compared to levels in control (30 and 65%, respectively) and gestation only (33 and 55%, respectively) exposed mice. Together, these results suggest that continuous inorganic arsenic exposure at 85 ppm from gestation through one year increases the incidence and severity of urogenital proliferative lesions in female mice and decreases the incidence of liver and adrenal tumors in male mice. The paradoxical nature of these effects may be related to altered lipid metabolism, the effective dose in each target organ, and/or the shorter one-year observational period

    Laser Pointer Interaction with Tiled Displays

    No full text
    Much work has been done on the development of laser pointers as interaction devices. Typically a camera captures images of a display surface and extracts a laser pointer dot location. This location is processed and used as a cursor position. Little of this work, however, has been aimed at the practical details of implementing such a system. We discuss the design of such a tracking system, focusing on key practical implementation details. In particular we present a robust and efficient dot detection algorithm that allows us to use our system under a variety lighting conditions, and allows us to reduce the amount of image parsing required to find a laser position by an order of magnitude

    Bond performance between ultrahigh-performance concrete and normal-strength concrete

    No full text
    Ultrahigh-performance concrete (UHPC) exhibits several properties that make it appropriate for the rehabilitation of concrete structures. In this investigation, the application is focused on bridge deck overlays, but the study is equally applicable to other rehabilitation applications. Its negligible permeability makes this material suitable as a protective barrier that prevents any water or chemical penetration into the substrate. In addition, its ultra-high compressive strength and post-cracking tensile capacity could provide an improvement to the bearing capacity. However, for extensive acceptance, it has to be demonstrated that the bond between UHPC and normal strength concrete (NSC) offers a good long-term performance under a variety of operating conditions. The UHPC-NSC interface can experience high tensile, shear, and compressive stresses at both early and later life stages and the environmental conditions inherent to the operating environment. The success of the rehabilitation will depend on whether the bond interface can withstand the stress combinations subjected throughout its servicelife owing to material incompatibilities or applied loads. This paper explores the bond characteristics between UHPC and NSC under varying stress configurations and environmental conditions. Variables, such as roughness degree of the concrete substrates, age of bond, exposure to freeze-thaw cycles and wetting conditions of the concrete substrate, were included in this study. The combination of splitting tensile test with 0, 300, 600, and 900 freeze-thaw cycles was carried out to assess the bond performance under severe environmental conditions. The slantshear test was conducted with different interface angles to provide a broader understanding of the bond performance under several combinations of compression and shear stresses. In addition, measurements of the bond tensile strength, using the pull-off test, were used to provide data that can be correlated in the future with the other tests that only can be used in the laboratory. The experimental program showed that the bond performance between UHPC and NSC is adequate for bridge overlay applications, regardless of the degree of roughness of the concrete substrate, the age of the composite specimens, the exposure to freeze-thaw cycles, and the different loading configurations. The controlling factor was the strength gain of the UHPC at early ages relative to the strengths of the substrate. © 2014 American Society of Civil Engineers

    Alternative Processes for Manufacturing of Metal Oxide-based Potentiometric Chemosensors

    No full text
    New possibilities for the preparation of partially selective redox electrodes based on passivated metals of the subgroups IV to VI of the periodic system are presented by the example of vanadium. The gas phase oxidation at controlled oxygen partial pressures (CPO) and the pulsed laser deposition (PLD) as an high-vacuum method are utilised as alternative methods beside the well- established chemical and electrochemical passivation which usually lead to the highest possible oxidation state of the passivated metal. These newly available methods enable in principle the tailoring of oxidation states in the sensitive layer and therefore the optimisation of the electrochemical sensitivity and selectivity of sensors equipped with it. The use of vanadium as basic electrode material is crucial because it shows in several matrices a remarkable corrosion susceptibility. This problem can be solved by the introduction of stable alloys with high vanadium contents. These materials can be efficiently produced by pulsed laser deposition (PLD)

    A Practical System for Laser Pointer

    No full text
    Much work has been done on the development of laser pointers as interaction devices. Typically a camera captures images of a display surface and extracts a laser pointer dot location. This location is processed and used as a cursor position. While the current literature well explains such a system, we feel that some important practical concerns have gone unaddressed. We discuss the design of such a tracking system, focusing on key practical implementation details. In particular we present a robust and e#cient dot detection algorithm that allows us to use our system under a variety lighting conditions, and allows us to reduce the amount of image parsing required to find a laser position by an order of magnitude
    corecore