115 research outputs found
The viability of low-mass subhaloes as targets for gamma-ray dark matter searches
In this work, we investigate the discovery potential of low-mass Galactic
dark matter (DM) subhaloes for indirect searches of DM. We use data from the
Via Lactea II (VL-II) N-body cosmological simulation, which resolves subhaloes
down to solar masses and it is thus ideal for this purpose.
First, we characterize the abundance, distribution and structural properties of
the VL-II subhalo population in terms of both subhalo masses and maximum
circular velocities. Then, we repopulate the original simulation with millions
of subhaloes of masses down to about five orders of magnitude below the minimum
VL-II subhalo mass (more than one order of magnitude in velocities). We compute
subhalo DM annihilation astrophysical "J-factors" and angular sizes for the
entire subhalo population, by placing the Earth at a random position but at the
right galactocentric distance in the simulation. Thousands of these
realizations are generated in order to obtain statistically meaningful results.
We find that some nearby low-mass Galactic subhaloes, not massive enough to
retain stars or gas, may indeed yield DM annihilation fluxes comparable to
those expected from other, more massive and acknowledgeable DM targets like
dwarf satellite galaxies. Typical angular sizes are of the order of the degree,
thus subhaloes potentially appearing as extended sources in gamma-ray
telescopes, depending on instrument angular resolution and sensitivity. Our
work shows that low-mass Galactic subhaloes with no visible counterparts are
expected to play a relevant role in current and future indirect DM search
searches and should indeed be considered as excellent DM targets.Comment: 15 pages, 15 figures. Submitted to MNRAS. Comments welcome
Cherenkov Telescope Array sensitivity to branon dark matter models
This is the Accepted Manuscript version of an article accepted for publication in Journal of Cosmology and Astroparticle Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1475-7516/2020/10/041In the absence of a clear hint of dark matter (DM) signals in the GeV regime so far, heavy, O (TeV) DM candidates are gradually earning more and more attention within the community. Among others, extra-dimensional brane-world models may produce termal DM candidates with masses up to 100 TeV. These heavy DM candidates could be detected with the next generation of very-high-energy gamma-ray observatories such as the Cherenkov Telescope Array (CTA). In this work, we study the sensitivity of CTA to branon DM via the observation of representative astrophysical DM targets, namely dwarf spheroidal galaxies. In particular, we focus on Draco and Sculptor, two well-known dwarfs visible from the Northern and Southern Hemisphere, respectively. For each of these targets, we simulated 300 h of CTA observations and studied the sensitivity of both CTA-North and CTA-South to branon annihilations using the latest publicly available instrument response functions and most recent analysis tools. We computed annihilation cross section values needed to reach a 5σ detection as a function of the branon mass. Additionally, in the absence of a predicted DM signal, we obtained 2σ upper limits on the annihilation cross section. These limits lie 1.5 - 2 orders of magnitude above the thermal relic cross section value, depending on the considered branon mass. Yet, CTA will allow to exclude a significant portion of the brane tension-mass parameter space in the 0.1 - 60 TeV branon mass range, and up to tensions of ~ 10 TeV. More importantly, CTA will significantly enlarge the region already excluded by AMS and CMS, and will provide valuable complementary information to future SKA radio observations. We conclude that CTA will possess potential to constrain brane-world models and, more in general, TeV DM candidatesThe work of AAS, VG and MASC was supported by the Spanish Agencia Estatal de Investigación
through the grants PGC2018-095161-B-I00 and IFT Centro de Excelencia Severo
Ochoa SEV-2016-0597, the Atracción de Talento contract no. 2016-T1/TIC-1542 granted
by the Comunidad de Madrid in Spain, and the MultiDark Consolider Network FPA2017-
90566-REDC. DN acknowledges support from the former Spanish Ministry of Economy, Industry, and Competitiveness / European Regional Development Fund grant FPA2015-73913-JIN and the MultiDark Consolider Network FPA2017-90566-RED
Properties of subhalos in the interacting dark matter scenario
One possible and natural derivation fromthe collisionless cold dark matter (CDM) standard cosmological framework is the assumption of the existence of interactions between dark matter (DM) and photons or neutrinos. Such a possible interacting dark matter (IDM) model would imply a suppression of small-scale structures due to a large collisional damping effect, even though the weakly-interacting massive particle (WIMP) can still be the DM candidate. Because of this, IDM models can help alleviate alleged tensions between standard CDM predictions and observations at small mass scales. In this work, we investigate the properties of the DM halo substructure or subhalos formed in a high-resolution cosmological N-body simulation specifically run within these alternative models. We also run its CDM counterpart, which allowed us to compare subhalo properties in both cosmologies. We show that, in the lower mass range covered by our simulation runs, both subhalo concentrations and abundances are systematically lower in IDM compared to the CDM scenario. Yet, as in CDM, we find that median IDM subhalo concentration values increase towards the innermost regions of their hosts for the same mass subhalos. Similarly to CDM, we find IDM subhalos to be more concentrated than field halos of the same mass. Our work has a direct application to studies aimed at the indirect detection of DM where subhalos are expected to boost the DM signal of their host halos significantly. From our results, we conclude that the role of the halo substructure in DM searches will be less important in interacting scenarios than in CDM, but is nevertheless far from being negligible.Fil: Moliné, Ángeles. Universidad Autónoma de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Schewtschenko, Jascha A.. University of Portsmouth; Reino UnidoFil: Sánchez Conde, Miguel A.. Universidad Autónoma de Madrid; EspañaFil: Aguirre Santaella, Alejandra. Universidad Autónoma de Madrid; EspañaFil: Cora, Sofia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Abadi, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentin
Spectral and spatial analysis of the dark matter subhalo candidates among Fermi Large Area Telescope unidentified sources
Fermi-LAT unidentified sources (unIDs) have proven to be compelling targets
for performing indirect dark matter (DM) searches. In a previous work, we found
that among the 1235 unIDs in Fermi-LAT catalogs (3FGL, 2FHL and 3FHL) only 44
of those are DM subhalos candidates. We now implement a spectral analysis to
test whether these remaining sources are compatible or not with DM origin. This
analysis is executed using almost 10 years of Pass 8 Fermi-LAT data. None of
the unIDs are found to significantly prefer DM-induced emission compared to
other, more conventional, astrophysical sources. In order to discriminate
between pulsar and DM sources, we developed a new method which is based on the
source's spectral curvature, peak energy, and its detection significance. We
also look for spatial extension, which may be a hint for a DM origin according
to our N-body simulation studies of the subhalo population. In addition, we
used Gaia DR2 data to search for a potential stellar counterpart to our best DM
subhalo candidates and, although no firm associations could be found, one of
them coincides with the Sagittarius stream. Finally, previous constraints on
the DM annihilation cross section are updated with the new number of remaining
DM subhalo candidates among unIDs. Our limits now rule out canonical thermal
WIMPs up to masses of 10 GeV for and 20 GeV for
annihilation channels, in this way being as sensitive and complementary to
those obtained from other targets and probes.Comment: 27 pages, 10 figures, JCAP accepted. Matches the accepted versio
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre
Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbeletche, L.; Bordas, P.; Bosnjak, Z.; Bottacini, E.; Bozhilov, V.; Bregeon, J.; Brill, A.; Bringmann, T.; Brown, A. M.; Brun, P.; Brun, F.; Bruno, P.; Bulgarelli, A.; Burton, M.; Burtovoi, A.; Buscemi, M.; Cameron, R.; Capasso, M.; Caproni, A.; Capuzzo-Dolcetta, R.; Caraveo, P.; Carosi, R.; Carosi, A.; Casanova, S.; Cascone, E.; Cassol, F.; Catalani, F.; Cauz, D.; Cerruti, M.; Chadwick, P.; Chaty, S.; Chen, A.; Chernyakova, M.; Chiaro, G.; Chiavassa, A.; Chikawa, M.; Chudoba, J.; Çolak, M.; Conforti, V.; Coniglione, R.; Conte, F.; Contreras, J. L.; Coronado-Blazquez, J.; Costa, A.; Costantini, H.; Cotter, G.; Cristofari, P.; D'Aimath, A.; D'Ammando, F.; Damone, L. A.; Daniel, M. K.; Dazzi, F.; De Angelis, A.; De Caprio, V.; de Cássia dos Anjos, R.; de Gouveia Dal Pino, E. M.; De Lotto, B.; De Martino, D.; de Oña Wilhelmi, E.; De Palma, F.; de Souza, V.; Delgado, C.; Delgado Giler, A. G.; della Volpe, D.; Depaoli, D.; Di Girolamo, T.; Di Pierro, F.; Di Venere, L.; Diebold, S.; Dmytriiev, A.; Domínguez, A.; Donini, A.; Doro, M.; Ebr, J.; Eckner, C.; Edwards, T. D. P.; Ekoume, T. R. N.; Elsässer, D.; Evoli, C.; Falceta-Goncalves, D.; Fedorova, E.; Fegan, S.; Feng, Q.; Ferrand, G.; Ferrara, G.; Fiandrini, E.; Fiasson, A.; Filipovic, M.; Fioretti, V.; Fiori, M.; Foffano, L.; Fontaine, G.; Fornieri, O.; Franco, F. J.; Fukami, S.; Fukui, Y.; Gaggero, D.; Galaz, G.; Gammaldi, V.; Garcia, E.; Garczarczyk, M.; Gascon, D.; Gent, A.; Ghalumyan, A.; Gianotti, F.; Giarrusso, M.; Giavitto, G.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J.; Gnatyk, R.; Goldoni, P.; González, M. M.; Gourgouliatos, K.; Granot, J.; Grasso, D.; Green, J.; Grillo, A.; Gueta, O.; Gunji, S.; Halim, A.; Hassan, T.; Heller, M.; Hernández Cadena, S.; Hiroshima, N.; Hnatyk, B.; Hofmann, W.; Holder, J.; Horan, D.; Hörandel, J.; Horvath, P.; Hovatta, T.; Hrabovsky, M.; Hrupec, D.; Hughes, G.; Humensky, T. B.; Hütten, M.; Iarlori, M.; Inada, T.; Inoue, S.; Iocco, F.; Iori, M.; Jamrozy, M.; Janecek, P.; Jin, W.; Jouvin, L.; Jurysek, J.; Karukes, E.; Katarzyński, K.; Kazanas, D.; Kerszberg, D.; Kherlakian, M. C.; Kissmann, R.; Knödlseder, J.; Kobayashi, Y.; Kohri, K.; Komin, N.; Kubo, H.; Kushida, J.; Lamanna, G.; Lapington, J.; Laporte, P.; Leigui de Oliveira, M. A.; Lenain, J.; Leone, F.; Leto, G.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez, A.; López, M.; López-Coto, R.; Loporchio, S.; Luque-Escamilla, P. L.; Mach, E.; Maggio, C.; Maier, G.; Mallamaci, M.; Malta Nunes de Almeida, R.; Mandat, D.; Manganaro, M.; Mangano, S.; Manicò, G.; Marculewicz, M.; Mariotti, M.; Markoff, S.; Marquez, P.; Martí, J.; Martinez, O.; Martínez, M.; Martínez, G.; Martínez-Huerta, H.; Maurin, G.; Mazin, D.; Mbarubucyeye, J. D.; Medina Miranda, D.; Meyer, M.; Miceli, M.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Mode, B.; Moderski, R.; Mohrmann, L.; Molina, E.; Montaruli, T.; Moralejo, A.; Morcuende-Parrilla, D.; Morselli, A.; Mukherjee, R.; Mundell, C.; Nagai, A.; Nakamori, T.; Nemmen, R.; Niemiec, J.; Nieto, D.; Nikołajuk, M.; Ninci, D.; Noda, K.; Nosek, D.; Nozaki, S.; Ohira, Y.; Ohishi, M.; Ohtani, Y.; Oka, T.; Okumura, A.; Ong, R. A.; Orienti, M.; Orito, R.; Orlandini, M.; Orlando, S.; Orlando, E.; Ostrowski, M.; Oya, I.; Pagano, I.; Pagliaro, A.; Palatiello, M.; Pantaleo, F. R.; Paredes, J. M.; Pareschi, G.; Parmiggiani, N.; Patricelli, B.; Pavletić, L.; Pe'er, A.; Pecimotika, M.; Pérez-Romero, J.; Persic, M.; Petruk, O.; Pfrang, K.; Piano, G.; Piatteli, P.; Pietropaolo, E.; Pillera, R.; Pilszyk, B.; Pintore, F.; Pohl, M.; Poireau, V.; Prado, R. R.; Prandini, E.; Prast, J.; Principe, G.; Prokoph, H.; Prouza, M.; Przybilski, H.; Pühlhofer, G.; Pumo, M. L.; Queiroz, F.; Quirrenbach, A.; Rainò, S.; Rando, R.; Razzaque, S.; Recchia, S.; Reimer, O.; Reisenegger, A.; Renier, Y.; Rhode, W.; Ribeiro, D.; Ribó, M.; Richtler, T.; Rico, J.; Rieger, F.; Rinchiuso, L.; Rizi, V.; Rodriguez, J.; Rodriguez Fernandez, G.; Rodriguez Ramirez, J. C.; Rojas, G.; Romano, P.; Romeo, G.; Rosado, J.; Rowell, G.; Rudak, B.; Russo, F.; Sadeh, I.; Sæther Hatlen, E.; Safi-Harb, S.; Salesa Greus, F.; Salina, G.; Sanchez, D.; Sánchez-Conde, M.; Sangiorgi, P.; Sano, H.; Santander, M.; Santos, E. M.; Santos-Lima, R.; Sanuy, A.; Sarkar, S.; Saturni, F. G.; Sawangwit, U.; Schussler, F.; Schwanke, U.; Sciacca, E.; Scuderi, S.; Seglar-Arroyo, M.; Sergijenko, O.; Servillat, M.; Seweryn, K.; Shalchi, A.; Sharma, P.; Shellard, R. C.; Siejkowski, H.; Silk, J.; Siqueira, C.; Sliusar, V.; Słowikowska, A.; Sokolenko, A.; Sol, H.; Spencer, S.; Stamerra, A.; Stanič, S.; Starling, R.; Stolarczyk, T.; Straumann, U.; Strišković, J.; Suda, Y.; Suomijarvi, T.; Świerk, P.; Tavecchio, F.; Taylor, L.; Tejedor, L. A.; Teshima, M.; Testa, V.; Tibaldo, L.; Todero Peixoto, C. J.; Tokanai, F.; Tonev, D.; Tosti, G.; Tosti, L.; Tothill, N.; Truzzi, S.; Travnicek, P.; Vagelli, V.; Vallage, B.; Vallania, P.; van Eldik, C.; Vandenbroucke, J.; Varner, G. S.; Vassiliev, V.; Vázquez Acosta, M.; Vecchi, M.; Ventura, S.; Vercellone, S.; Vergani, S.; Verna, G.; Viana, A.; Vigorito, C. F.; Vink, J.; Vitale, V.; Vorobiov, S.; Vovk, I.; Vuillaume, T.; Wagner, S. J.; Walter, R.; Watson, J.; Weniger, C.; White, R.; White, M.; Wiemann, R.; Wierzcholska, A.; Will, M.; Williams, D. A.; Wischnewski, R.; Yanagita, S.; Yang, L.; Yoshikoshi, T.; Zacharias, M.; Zaharijas, G.; Zakaria, A. A.; Zampieri, L.; Zanin, R.; Zaric, D.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A. A.; Zech, A.; Zechlin, H.; Zhdanov, V. I.; Živec, M.-- This is an open access article published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies. © 2021 The Author(s).We gratefully acknowledge financial support from the following agencies and organisations: State Committee of Science of Armenia, Armenia; The Australian Research Council, Astronomy Australia Ltd, The University of Adelaide, Australian National University, Monash University, The University of New South Wales, The University of Sydney, Western Sydney University, Australia; Federal Ministry of Education, Science and Research, and Innsbruck University, Austria; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministry of Science, Technology, Innovations and Communications (MCTIC), and Instituto Serrapilheira, Brasil; Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018, Bulgaria; The Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency, Canada; CONICYT-Chile grants CATA AFB 170002, ANID PIA/APOYO AFB 180002, ACT 1406, FONDECYT-Chile grants, 1161463, 1170171, 1190886, 1171421, 1170345, 1201582, Gemini-ANID 32180007, Chile; Croatian Science Foundation, Rudjer Boskovic Institute, University of Osijek, University of Rijeka, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; Ministry of Education, Youth and Sports, MEYS LM2015046, LM2018105, LTT17006, EU/MEYS CZ.02.1.01/0.0/0.0/16_013/0001403, CZ.02.1.01/0.0/0.0/18_046/0016007 and CZ.02.1.01/0.0/0.0/16_019/0000754, Czech Republic; Academy of Finland (grant nr.317636, 320045, 317383 and 320085), Finland; Ministry of Higher Education and Research, CNRS-INSU and CNRS-IN2P3, CEA-Irfu, ANR, Regional Council Ile de France, Labex ENIGMASS, OSUG2020, P2IO and OCEVU, France; Max Planck Society, BMBF, DESY, Helmholtz Association, Germany; Department of Atomic Energy, Department of Science and Technology, India; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), MIUR, Istituto Nazionale di Astrofisica (INAF-OABRERA) Grant Fondazione Cariplo/Regione Lombardia ID 2014-1980/RST_ERC, Italy; ICRR, University of Tokyo, JSPS, MEXT, Japan; Netherlands Research School for Astronomy (NOVA), Netherlands Organization for Scientific Research (NWO), Netherlands; University of Oslo, Norway; Ministry of Science and Higher Education, DIR/WK/2017/12, the National Centre for Research and Development and the National Science Centre, UMO-2016/22/M/ST9/00583, Poland; Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, J1-9146, J1-1700, N1-0111, and the Young Researcher program, Slovenia; South African Department of Science and Technology and National Research Foundation through the South African Gamma-Ray Astronomy Programme, South Africa; The Spanish Ministry of Science and Innovation and the Spanish Research State Agency (AEI) through grants AYA2016-79724-C4-1-P, AYA2016-80889-P, AYA2016-76012-C3-1-P, BES-2016-076342, ESP2017-87055-C2-1-P, FPA2017-82729-C6-1-R, FPA2017-82729-C6-2-R, FPA2017-82729-C6-3-R, FPA2017-82729-C6-4-R, FPA2017-82729-C6-5-R, FPA2017-82729-C6-6-R, PGC2018-095161-B-I00, PGC2018-095512-B-I00; the \Centro de Excelencia Severo Ochoa"program through grants no. SEV-2015-0548, SEV-2016-0597, SEV-2016-0588, SEV-2017-0709; the "Unidad de Excelencia Maria de Maeztu" program through grant no.
MDM-2015-0509; the "Ramon y Cajal" programme through grants RYC-2013-14511, RyC-2013-14660, RYC-2017-22665; and the MultiDark Consolider Network FPA2017-90566-REDC. Atraccion de Talento contract no. 2016-T1/TIC-1542 granted by the Comunidad de Madrid; the "Postdoctoral Junior Leader Fellowship" programme from La Caixa Banking Foundation, grants no. LCF/BQ/LI18/11630014 and LCF/BQ/PI18/11630012; the "Programa Operativo" FEDER2014-2020, Consejeria de Economia y Conocimiento de la Junta de Andalucia (ref. 1257737), PAIDI 2020 (ref. P18-FR-1580), and Universidad de Jaen; the Spanish AEI EQC2018-005094-P FEDER 2014-2020; the European Union's "Horizon 2020" research and innovation programme under Marie Sklodowska-Curie grant agreement no. 665919; and the ESCAPE project with grant no. GA:824064, Spain; Swedish Research Council, Royal Physiographic Society of Lund, Royal Swedish Academy of Sciences, The Swedish National Infrastructure for Computing (SNIC) at Lunarc (Lund), Sweden; State Secretariat for Education, Research and Innovation (SERI) and Swiss National Science Foundation (SNSF), Switzerland; Durham University, Leverhulme Trust, Liverpool University, University of Leicester, University of Oxford, Royal Society, Science and Technology Facilities Council, U.K.; U.S. National Science Foundation, U.S. Department of Energy, Argonne National Laboratory, Barnard College, University of California, University of Chicago, Columbia University, Georgia Institute of Technology, Institute for Nuclear and Particle Astrophysics (INPAC-MRPI program), Iowa State University, the Smithsonian Institution, Washington University McDonnell Center for the Space Sciences, The University of Wisconsin and the Wisconsin Alumni Research Foundation, U.S.A.
The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements No 262053 and No 317446. This project is receiving funding from the European Union's Horizon 2020 research and innovation programs under agreement No 676134.Peer reviewe
LCDM halo substructure properties revealed with high resolution and large volume cosmological simulations
We investigate the structural properties, distribution and abundance of LCDM
dark matter subhaloes using the Phi-4096 and Uchuu suite of N-body cosmological
simulations. Thanks to the combination of their large volume, high mass
resolution and superb statistics, we are able to quantify -- for the first time
consistently over more than seven decades in ratio of subhalo-to-host-halo mass
-- dependencies of subhalo properties with mass, maximum circular velocity,
Vmax, host halo mass and distance to host halo centre. We also dissect the
evolution of these dependencies over cosmic time. We provide accurate fits for
the subhalo mass and velocity functions, both exhibiting decreasing power-law
slopes in the expected range of values and with no significant dependence on
redshift. We also find subhalo abundance to depend weakly on host halo mass. We
explore the distribution of subhaloes within their hosts and its evolution over
cosmic time for subhaloes located as deep as ~0.1 per cent of the host virial
radius. Subhalo structural properties are codified via a concentration
parameter, cV, that does not depend on any specific, pre-defined density
profile and relies only on Vmax. We derive the cV-Vmax relation in the range
7-1500 km/s and find an important dependence on distance of the subhalo to the
host halo centre, as already described in Molin\'e et al. (2017).
Interestingly, we also find subhaloes of the same mass to be significantly more
concentrated into more massive hosts. Finally, we investigate the redshift
evolution of cV, and provide accurate fits that take into account all mentioned
dependencies. Our results offer an unprecedented detailed characterization of
the subhalo population, consistent over a wide range of subhalo and host halo
masses, as well as cosmic times. Our work enables precision work in any future
research involving dark matter halo substructure.Comment: 17 pages, 15 figures, 5 tables. Submitted to the journal. Comments
welcome
Properties of subhalos in the interacting dark matter scenario
One possible and natural derivation from the collisionless cold dark matter (CDM) standard cosmological framework is the assumption of the existence of interactions between dark matter (DM) and photons or neutrinos. Such possible interacting dark matter (IDM) model would imply a suppression of small-scale structures due to a large collisional damping effect, even though the weakly interacting massive particle (WIMP) can still be the DM candidate. Because of this, IDM models can help alleviate alleged tensions between standard CDM predictions and observations at small mass scales. In this work, we investigate the properties of DM halo substructure or subhalos formed in a high-resolution cosmological N-body simulation specifically run within these alternative models. We also run its CDM counterpart, which allowed us to compare subhalo properties in both cosmologies. We show that, in the lower mass range covered by our simulation runs, both subhalo concentrations and abundances are systematically lower in IDM compared to the CDM scenario. Yet, as in CDM, we find that median IDM subhalo concentration values increase towards the innermost regions of their hosts for same mass subhalos. Also similarly to CDM, we find IDM subhalos to be more concentrated than field halos of the same mass. Our work has a direct application on studies aimed at the indirect detection of DM where subhalos are expected to boost the DM signal of their host halos significantly. From our results, we conclude that the role of halo substructure in DM searches will be less important in interacting scenarios than in CDM, but is nevertheless far from being negligible.Facultad de Ciencias Astronómicas y Geofísica
Dark matter line searches with the Cherenkov Telescope Array
Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin
Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud
A. Acharyya et al.A deep survey of the Large Magellanic Cloud at ∼0.1–100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3–2.4 pending a flux increase by a factor of >3–4 over ∼2015–2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1–10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro–Frenk–White profiles.We gratefully acknowledge financial support from the following agencies and organizations: State Committee of Science of Armenia, Armenia; The Australian Research Council, Astronomy Australia Ltd, The University of Adelaide, Australian National University, Monash University, The University of New South Wales, The University of Sydney, Western Sydney University, Australia; Federal Ministry of Education, Science and Research, and Innsbruck University, Austria; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundação de Apoio à Ciência, Tecnologia e Inovação do Paraná – Fundação Araucária, Ministry of Science, Technology, Innovations and Communications (MCTIC), Brasil; Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018, Bulgaria; The Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency, Canada; CONICYT-Chile grants CATA AFB 170002, ANID PIA/APOYO AFB 180002, ACT 1406, FONDECYT-Chile grants, 1161463, 1170171, 1190886, 1171421, 1170345, 1201582, Gemini-ANID 32180007, Chile; Croatian Science Foundation, Rudjer Boskovic Institute, University of Osijek, University of Rijeka, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; Ministry of Education, Youth and Sports, MEYS LM2015046, LM2018105, LTT17006, EU/MEYS CZ.02.1.01/0.0/0.0/16_013/0001403, CZ.02.1.01/0.0/0.0/18_046/0016007 and CZ.02.1.01/0.0/0.0/16_019/0000754, Czech Republic; Academy of Finland (grants 317636 and 320045), Finland; Ministry of Higher Education and Research, CNRS-INSU and CNRS-IN2P3, CEA-Irfu, ANR, Regional Council Ile de France, Labex ENIGMASS, OCEVU, OSUG2020 and P2IO, France; Max Planck Society, BMBF, DESY, Helmholtz Association, Germany; Department of Atomic Energy, Department of Science and Technology, India; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), MIUR, Istituto Nazionale di Astrofisica (INAF-OABRERA) Grant Fondazione Cariplo/Regione Lombardia ID 2014-1980/RST_ERC, Italy; ICRR, University of Tokyo, JSPS, MEXT, Japan; Netherlands Research School for Astronomy (NOVA), Netherlands Organization for Scientific Research (NWO), Netherlands; University of Oslo, Norway; Ministry of Science and Higher Education, DIR/WK/2017/12, the National Centre for Research and Development and the National Science Centre, UMO-2016/22/M/ST9/00583, Poland; Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, J1-9146, J1-1700, N1-0111, and the Young Researcher programme, Slovenia; South African Department of Science and Technology and National Research Foundation through the South African Gamma-Ray Astronomy Programme, South Africa; The Spanish groups acknowledge the Spanish Ministry of Science and Innovation and the Spanish Research State Agency (AEI) through grants AYA2016-79724-C4-1-P, AYA2016-80889-P, AYA2016-76012-C3-1-P, BES-2016-076342, FPA2017-82729-C6-1-R, FPA2017-82729-C6-2-R, FPA2017-82729-C6-3-R, FPA2017-82729-C6-4-R, FPA2017-82729-C6-5-R, FPA2017-82729-C6-6-R, PGC2018-095161-B-I00, PGC2018-095512-B-I00, PID2019-107988GB-C22; the ‘Centro de Excelencia Severo Ochoa’ programme through grants no. SEV-2016-0597, SEV-2016-0588, SEV-2017-0709, CEX2019-000920-S; the ‘Unidad de Excelencia María de Maeztu’ programme through grant no. MDM-2015-0509; the ‘Ramón y Cajal’ programme through grants RYC-2013-14511, RYC-2017-22665; and the MultiDark Consolider Network FPA2017-90566-REDC. They also acknowledge the Atracción de Talento contract no. 2016-T1/TIC-1542 granted by the Comunidad de Madrid; the ‘Postdoctoral Junior Leader Fellowship’ programme from La Caixa Banking Foundation, grants no. LCF/BQ/LI18/11630014 and LCF/BQ/PI18/11630012; the ‘Programa Operativo’ FEDER 2014–2020, Consejería de Economía y Conocimiento de la Junta de Andalucía (Ref. 1257737), PAIDI 2020 (Ref. P18-FR-1580) and Universidad de Jaén; ‘Programa Operativo de Crecimiento Inteligente’ FEDER 2014-2020 (Ref. ESFRI-2017-IAC-12), Ministerio de Ciencia e Innovación, 15 per cent co-financed by Consejería de Economía, Industria, Comercio y Conocimiento del Gobierno de Canarias; the Spanish AEI EQC2018-005094-P FEDER 2014–2020; the European Union’s ‘Horizon 2020’ research and innovation programme under Marie Sklodowska-Curie grant agreement no. 665919; and the ESCAPE project with grant no. GA:824064; Swedish Research Council, Royal Physiographic Society of Lund, Royal Swedish Academy of Sciences, The Swedish National Infrastructure for Computing (SNIC) at Lunarc (Lund), Sweden; State Secretariat for Education, Research and Innovation (SERI) and Swiss National Science Foundation (SNSF), Switzerland; Durham University, Leverhulme Trust, Liverpool University, University of Leicester, University of Oxford, Royal Society, Science and Technology Facilities Council, UK; U.S. National Science Foundation, U.S. Department of Energy, Argonne National Laboratory, Barnard College, University of California, University of Chicago, Columbia University, Georgia Institute of Technology, Institute for Nuclear and Particle Astrophysics (INPAC-MRPI programme), Iowa State University, the Smithsonian Institution, Washington University McDonnell Center for the Space Sciences, The University of Wisconsin and the Wisconsin Alumni Research Foundation, USA. This research has made use of the CTA instrument response functions provided by the CTA Consortium and Observatory, see http://www.cta-observatory.org/science/ctao-performance/ for more details. The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreements no. 262053 and no. 317446. This project is receiving funding from the European Union’s Horizon 2020 research and innovation programs under agreement no. 676134. We acknowledge financial support from the French Agence Nationale de la Recherche under reference ANR-19-CE31-0014 (GAMALO project) and the Italian grant 2017W4HA7S ‘NAT-NET: Neutrino and Astroparticle Theory Network’ (PRIN 2017) funded by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), and Iniziativa Specifica TAsP of INFN.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2019-000920-S).Peer reviewe
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre
We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.A. Acharyya … G. Rowell … M. White … et al. [The CTA consortium
- …