176 research outputs found

    Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach

    Get PDF
    This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach

    Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    Get PDF
    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration

    Heart Rate Variability Analysis Guided by Respiration in Major Depressive Disorder

    Get PDF
    In this study a Heart Rate Variability (HRV) analysis guided by respiration to evaluate different patterns of Autonomic Nervous System (ANS) in response to a cognitive stressor between Major Depressive Disorder (MDD) and control (CT) subjects is presented. Cardiorespiratory Time Frequency Coherence (TFC) reveals the local coupling of HRV and respiration signal which is essential and usually not included in estimation of ANS measures derived by HRV. Parasympathetic activity of ANS is measured as the power at the frequencies where TFC between HRV and respiration is significant, whereas sympathetic dominance is measured as the normalized power in the low frequency band [0.04,0.15] Hz of HRV excluding the power of those frequencies related to respiration. Results showed significantly lower (p <; 0.05) sympathetic dominance in MDD with respect to CT subjects during stress, suggesting that ANS reactivity as response to stress stimuli is lower in MDD patients. The study of ANS reactivity to a stressor may serve as a biomarker useful for the early diagnosis and monitoring of MDD patients

    Body Adiposity Index Utilization in a Spanish Mediterranean Population: Comparison with the Body Mass Index

    Get PDF
    BACKGROUND: Body fat content and fat distribution or adiposity are indicators of health risk. Several techniques have been developed and used for assessing and/or determining body fat or adiposity. Recently, the Body Adiposity Index (BAI), which is based on the measurements of hip circumference and height, has been suggested as a new index of adiposity. The aim of the study was to compare BAI and BMI measurements in a Caucasian population from a European Mediterranean area and to assess the usefulness of the BAI in men and women separately. RESEARCH METHODOLOGY/PRINCIPAL FINDINGS: A descriptive cross-sectional study was conducted in a Caucasian population. All participants in the study (1,726 women and 1,474 men, mean age 39.2 years, SD 10.8) were from Mallorca (Spain). Anthropometric data, including percentage of body fat mass obtained by Bioelectrical Impedance Analysis, were determined. Body Mass Index (BMI) and BAI were calculated. BAI and BMI showed a good correlation (r = 0.64, p<0.001). A strong correlation was also found between BAI and the % fat determined using BIA (r = 0.74, p<0.001), which is even stronger than the one between BMI and % fat (r = 0.54, p<0.001). However, the ROC curve analysis showed a higher accuracy for BMI than for the BAI regarding the discriminatory capacity. CONCLUSION: The BAI could be a good tool to measure adiposity due, at least in part, to the advantages over other more complex mechanical or electrical systems. Probably, the most important advantage of BAI over BMI is that weight is not needed. However, in general it seems that the BAI does not overcome the limitations of BMI

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Inverse Strategies For Characterization Of Material Properties

    Full text link
    The imaging of constitutive parameters is of interest in many science and engineering fields. Indeed, non-invasive and nondestructive techniques are used to characterize key properties of a system given its response due to an external excitation. Then, assuming a priori a given model of the system, the measured response and an inverse approach are used to identify material properties. This work was undertaken in the context of identification of spatially-varying elastic and viscoelastic parameters of solids using vibroacoustics based techniques. Two optimization approaches, nongradient and gradient-based optimization, were investigated in this work. Initially, nongradient-based algorithms were preferred over gradient-based algorithms because of there ability to find global minima irrespective of initial guesses. For instance, Gaussian radial basis functions were used to construct a finite-dimensional representation of the elastic moduli. Then, an inverse approach was used to approximate the spatiallyvarying elastic moduli through the system response induced by the radiation force of ultrasound. The inverse problem was cast as an optimization problem in which a least-square error functional that quantified the misfit between the experimental and finite element representation system response is minimized by searching over a space of admissible vectors that best describe the spatial distribution of the elastic moduli. Subsequently, gradient-based optimization was preferred over nongradient-based optimization as the number of design variables increased due to the increment in computational cost. Two inverse approaches, L2-adjoint and concept of error in constitutive equation, were investigated in the context of gradient-based optimization. First, the L2-adjoint inverse approach was used to characterize spatially-varying viscoelastic properties because of its advantage to efficiently calculate the gradient of the error functional with respect to the design variables by solving the corresponding adjoint equations. The inverse problem was cast as an optimization problem in which a least-square error functional that quantified the misfit between the experimental and the finite element representation system response is minimized by searching over a space of admissible functions that best describe the spatially-varying viscoelastic properties. Given that the least-square error functional is non-convex, an inverse approach based on the concept of error in constitutive equation was investigated. The convexity property of the error in constitutive equation functionals, shown extensively for elliptic boundary value problems, reduce the sensitivity of the inverse solution to parameter initialization. The inverse problem was cast as an optimization problem in which an error in constitutive equation functional that quantified the misfit between the kinematically and dynamically admissible stress fields is minimized by searching over a space of admissible functions that best describe the spatially-varying viscoelastic properties. Contrary to the L2-adjoint inverse approach, the gradient equation is easily derived by taking the direct derivative of the error in constitutive equation functional with respect to the design variables. The feasibility of the proposed inverse approaches is demonstrated through a series of numerical and physical experiments. Results show that the proposed inverse approaches have the potential to characterize spatially-varying elastic and viscoelastic properties of solids in realistic settings. Furthermore, it will be shown that the inverse approach based on the concept of error in constitutive equation outperformed the L2-adjoint inverse approach

    Meningitis neumococica en el lactante

    No full text
    corecore