7 research outputs found

    Thermal Characterization of Conductive Filaments in Unipolar Resistive Memories

    Get PDF
    A methodology to estimate the device temperature in resistive random access memories (RRAMs) is presented. Unipolar devices, which are known to be highly influenced by thermal effects in their resistive switching operation, are employed to develop the technique. A 3D RRAM simulator is used to fit experimental data and obtain the maximum and average temperatures of the conductive filaments (CFs) that are responsible for the switching behavior. It is found that the experimental CFs temperature corresponds to the maximum simulated temperatures obtained at the narrowest sections of the CFs. These temperature values can be used to improve compact models for circuit simulation purposesConsejería de Conocimiento, Investigación y Universidad, Junta de Andalucía (Spain)FEDER B-TIC-624-UGR20. M.B.GRamón y Cajal RYC2020-030150-

    Modeling the variability of Au/ Ti/h BN/Au memris t ive devices

    Get PDF
    The variability of memristive devices using multilayer hexagonal boron nitride (h-BN) coupled with Ti and Au electrodes (i.e., Au/Ti/h-BN/Au) is analyzed in depth using different numerical techniques. We extract the reset voltage using three different methods, quantified its cycle-to-cycle variability, calculated the charge and flux that allows to minimize the effects of electric noise and the inherent stochasticity of resistive switching, described the device variability using time series analyses to assess the “memory” effect, and employed a circuit breaker simulator to understand the formation and rupture of the percolation paths that produce the switching. We conclude that the cycle-to-cycle variability of the Au/Ti/h-BN/Au devices presented here is higher than that previously observed in Au/h-BN/Au devices, and hence they may be useful for data encryption.Ministry of Science and Technology of China (2019YFE0124200, 2018YFE0100800)National Natural Science Foundation of China (61874075)Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía (Spain) and European Regional Development Fund (ERDF) under projects A-TIC-117-UGR18, A-FQM-66-UGR20, A-FQM-345- UGR18, B-TIC-624-UGR20 and IE2017-5414Grant PGC2018-098860-B-I00 supported by MCIU/AEI/FEDERMaria de Maeztu” Excellence Unit IMAG, reference CEX2020-001105-M, funded by MCIN/AEI/10.13039/501100011033King Abdullah University of Science and Technolog

    Variability and power enhancement of current controlled resistive switching devices

    Get PDF
    characterized using both current and voltage sweeps, with the device resistance and its cycle-to-cycle variability being analysed in each case. Experimental measurements indicate a clear improvement on resistance states stability when using current sweeps to induce both set and reset processes. Moreover, it has been found that using current to induce these transitions is more efficient than using voltage sweeps, as seen when analysing the device power consumption. The same results are obtained for devices with a Ni top electrode and a bilayer or pentalayer of HfO2/Al2O3 as dielectric. Finally, kinetic Monte Carlo and compact modelling simulation studies are performed to shed light on the experimental resultsConsejería de Conocimiento, Investigaci´on y Universidad, Junta de Andalucía (Spain)FEDER program for the project B-TIC-624-UGR20Spanish Consejo Superior de Investigaciones Científicas (CSIC) for the intramural project 20225AT012Ramón y Cajal grant No. RYC2020-030150-I

    Spiking neural networks based on two-dimensional materials

    Get PDF
    The development of artificial neural networks using memristors is gaining a lot of interest among technological companies because it can reduce the computing time and energy consumption. There is still no memristor, made of any material, capable to provide the ideal figures-of-merit required for the implementation of artificial neural networks, meaning that more research is required. Here we present the use of multilayer hexagonal boron nitride based memristors to implement spiking neural networks for image classification. Our study indicates that the recognition accuracy of the network is high, and that can be resilient to device variability if the number of neurons employed is large enough. There are very few studies that present the use of a two-dimensional material for the implementation of synapses of different features; in our case, in addition to a study of the synaptic characteristics of our memristive devices, we deal with complete spiking neural network training and inference processes.Ministry of Science and Technology, China 2018YFE0100800National Natural Science Foundation of China (NSFC) 61874075Collaborative Innovation Centre of Suzhou Nano Science TechnologyPriority Academic Program Development of Jiangsu Higher Education Institutions111 Project from the State Administration of Foreign Experts Affairs of ChinaJunta de AndaluciaEuropean Commission A-TIC-117-UGR18 B-TIC-624-UGR20 IE2017-5414Spanish GovernmentERDF fund RTI2018-098983-B-I00King Abdullah University of Science & Technolog

    Thermal Characterization of Conductive Filaments in Unipolar Resistive Memories

    No full text
    A methodology to estimate the device temperature in resistive random access memories (RRAMs) is presented. Unipolar devices, which are known to be highly influenced by thermal effects in their resistive switching operation, are employed to develop the technique. A 3D RRAM simulator is used to fit experimental data and obtain the maximum and average temperatures of the conductive filaments (CFs) that are responsible for the switching behavior. It is found that the experimental CFs temperature corresponds to the maximum simulated temperatures obtained at the narrowest sections of the CFs. These temperature values can be used to improve compact models for circuit simulation purposes

    Thermal Characterization of Conductive Filaments in Unipolar Resistive Memories

    No full text
    A methodology to estimate the device temperature in resistive random access memories (RRAMs) is presented. Unipolar devices, which are known to be highly influenced by thermal effects in their resistive switching operation, are employed to develop the technique. A 3D RRAM simulator is used to fit experimental data and obtain the maximum and average temperatures of the conductive filaments (CFs) that are responsible for the switching behavior. It is found that the experimental CFs temperature corresponds to the maximum simulated temperatures obtained at the narrowest sections of the CFs. These temperature values can be used to improve compact models for circuit simulation purposes

    Thermal Compact Modeling and Resistive Switching Analysis in Titanium Oxide-Based Memristors

    No full text
    Resistive switching devices based on the Au/Ti/TiO2/Au stack were developed. In addition to standard electrical characterization by means of I–V curves, scanning thermal microscopy was employed to localize the hot spots on the top device surface (linked to conductive nanofilaments, CNFs) and perform in-operando tracking of temperature in such spots. In this way, electrical and thermal responses can be simultaneously recorded and related to each other. In a complementary way, a model for device simulation (based on COMSOL Multiphysics) was implemented in order to link the measured temperature to simulated device temperature maps. The data obtained were employed to calculate the thermal resistance to be used in compact models, such as the Stanford model, for circuit simulation. The thermal resistance extraction technique presented in this work is based on electrical and thermal measurements instead of being indirectly supported by a single fitting of the electrical response (using just I–V curves), as usual. Besides, the set and reset voltages were calculated from the complete I–V curve resistive switching series through different automatic numerical methods to assess the device variability. The series resistance was also obtained from experimental measurements, whose value is also incorporated into a compact model enhanced version
    corecore