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Spiking neural networks based on two-dimensional materials
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Angel M. García-Vico4, Yaqing Shen5 and Mario Lanza 3✉

The development of artificial neural networks using memristors is gaining a lot of interest among technological companies because
it can reduce the computing time and energy consumption. There is still no memristor, made of any material, capable to provide
the ideal figures-of-merit required for the implementation of artificial neural networks, meaning that more research is required.
Here we present the use of multilayer hexagonal boron nitride based memristors to implement spiking neural networks for image
classification. Our study indicates that the recognition accuracy of the network is high, and that can be resilient to device variability
if the number of neurons employed is large enough. There are very few studies that present the use of a two-dimensional material
for the implementation of synapses of different features; in our case, in addition to a study of the synaptic characteristics of our
memristive devices, we deal with complete spiking neural network training and inference processes.
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INTRODUCTION
The Artificial Intelligence (AI) revolution, boosted by the internet-
of-things, terahertz communications and social media, requires a
new hardware infrastructure that can overcome important hurdles
of conventional computers, such as the von Neumann’s bottle-
neck (i.e., the effects related to the physical separation of data
processing and memory units) and the memory wall (i.e., the
steadily growing performance gap between the different types of
memory and the microprocessors)1. Hardware implementation of
neural networks (NNs) has attracted a lot of interest due to its
ability to compute and store information at the same location, i.e.,
at the electronic neurons (nodes that process signals and generate
a corresponding output) and the electronic synapses (nodes that
memorise information by means of an electrical parameter and
influence the signals that pass through them), as this computing
architecture spares time and energy related to data transfer.
However, the use of traditional circuits based on metal-oxide-
semiconductor (MOS) transistors to construct electronic neurons
and synapses is not power- and area-efficient because many
transistors are needed to build them up. The use of crossbar arrays
of memristors, i.e., a resistor with memory effect2, to construct NNs
has shown promising performance (i.e., low power consumption,
high accuracy) when employed for different fundamental AI
applications, such as face and speech recognition3–8. Such
crossbar circuits2,9 also allow in-memory computing (IMC), i.e.,
an approach where certain computation functions are performed
in-place in the memory itself10,11.
The NNs running most AI applications can be divided in two big

groups: artificial neural networks (ANNs) and spiking neural
networks (SNNs). In an ANN the information is represented with
values that are continuous in time and can achieve high data
recognition accuracy by using at least two layers of nonlinear
neurons interconnected by adjustable synaptic weights10. This
feature led to large networks with thousands of synapses11.
Conversely, in a SNN the information is coded with time-
dependent spikes, which remarkably reduces the power

consumption compared to ANNs12. The main differences between
ANNs and SNNs stand on: (i) the way the information is encoded
(ANNs use real-value activations to convey information whereas
SNNs modulate information on spikes), (ii) ANN neurons do not
have memory while SNNs typically do have, and (iii) the output
generated by most ANNs (e.g. feedforward ones) is not time
dependant while most SNNs are time-varying12. This latter feature
allows the creation of algorithms that can adapt and evolve with
time; in addition, SNNs have an asynchronous nature with respect
to ANN, this latter characteristic permit a greater system scalability
and general efficiency since no synchronisation mechanisms are
needed13.
Moreover, the SNNs operation is more similar to the actual

functioning of biological neural networks, and it can help to
understand complex mammal’s neural systems. In this work, we
are going to study the development of memristors for the
implementation of SNNs.
The main figure-of-merit of a memristor enabling its use as

electronic synapse in a SNN is the spike-timing dependent
plasticity (STDP) plot, a temporally asymmetric form of Hebbian
learning that is induced by tight temporal correlations between
the spikes of pre- and postsynaptic neurons13. A few implementa-
tions of SNN with memristors have been reported although a
strong software perspective is employed in the studies in most of
the cases14,15. Thereby both the synapses and neuron realisations
have to be investigated deeply in the future.
Two-dimensional (2D) layered materials have shown excellent

performance for the emulation of ANNs; devices based on these
materials showed remarkable artificial synaptic behaviour (STDP,
excitatory/inhibitory postsynaptic potential current (EPSC/IPSC),
paired-pulse facilitation/depression (PPF/PPD) as well as short-/
long-term plasticity (STP/LTP))16; optic-neural networks formed by
these 2D material-based devices have been successfully reported
where the coloured and colour-mixed pattern recognition
capability of the human visual system is emulated17. Memristors
made of 2D layered hexagonal boron nitride (h-BN) have exhibited
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the lowest energy consumption per state transition ever reported
for any type of memristor (≈8.8 zJ)18, which may be an important
advantage for low-power computation. There are studies with
memristors (not based on 2D materials) where synaptic features
needed for SNN implementations have been addressed at the
device level19, others use 2D material devices to analyse the
synaptic behaviour, also at the device level20,21. SNNs have been
studied making use of memristive devices (without 2D materi-
als)22,23. Nevertheless, the use of 2D materials for the development
of complete SNNs, including training and inference with hundreds
of neurons and a conventional dataset remains poorly explored.
Here we fabricate Au/Ti/h-BN/Au memristors, characterise the
presence and quality of the resistive switching (RS) phenomenon,
and investigate their potential for the implementation of SNNs.
Our study reveals that SNNs based on Au/Ti/h-BN/Au memristors
perform reasonably well for the recognition of images form the
Modified National Institute of Standards and Technology (MNIST)
database. In addition, if we model the experimental variability
measured along with STDP data, the influence on the recognition
accuracy of the SNN considered is negligible if a number of
neurons above 400 is employed. Our study opens up new
horizons for the use of 2D materials based memristors to
implement SNNs for advanced computation.

RESULTS AND DISCUSSION
Device fabrication and physical characterisation
We fabricated several arrays of 5 µm × 5 µm cross-point memris-
tors with a top-to-down Au/Ti/h-BN/Au structure on 300 nm SiO2/
Si wafers, by patterning the metallic electrodes via photolitho-
graphy and electron beam evaporation and transferring 6-nm-
thick (i.e., ≈18 layers) h-BN sheets previously grown by chemical
vapour deposition (CVD) on an independent Cu foil. Figure 1a
shows a schematic of all the steps followed for the fabrication of
the samples; this process employs low temperatures (<85 °C), it is
compatible with CMOS technologies, and has already been
employed to fabricate hybrid 2D/CMOS circuits24. The main
concerns when trying to introduce CVD-grown 2D materials on
silicon chips are the formation of cracks and the introduction of
polymer residues during the transfer process. However, in our
samples these two issues are not a problem because: (i) we are
employing a 6-nm-thick h-BN stack, which can withstand well the
mechanical stresses, and (ii) below a certain dose, the presence of
contaminants does not change the properties of the devices
because the out-of-plane currents driven by the memristors
always flow across the weakest point/s in the sample (i.e., regions
with polymer contaminants are not affecting because they are
highly insulating)25. Optical microscope images demonstrate the
absence of cracks (Fig. 1b), and scanning electron microscope
images show the presence of continuous wrinkles on both the
SiO2 substrate and on the bottom and top electrodes (Fig. 1c),
confirming the continuous nature of the multilayer h-BN sheet.
Cross-sectional transmission electron microscope (TEM) images
reveal correct layered structure with some native defects
embedded, i.e., lattice distortions (Fig. 1d, e). It is worth noting
that, in the TEM images, the atoms (of any type) appear with dark
colour, and the space between them with bright colour —
because electrons pass across the thin lamella and hit the
detector. Figure 1e shows that the bright lines (spaces between
layers) are interrupted with dark colours, indicating the presence
of interstitial atoms between the layers. These can be manifested
as individual locations (yellow arrows) or as few-atoms-wide
amorphous regions (dashed ovals). Moreover, it can be observed
that the interfaces contain a large amount of defective bonding,
while the bulk of the h-BN stack exhibits a better 2D layered
structure. These native defects in the h-BN stack produce leakage
currents and premature dielectric breakdown that hinders

applications as dielectric in transistors; however, such low
energy-to-breakdown allows partially recovering the initial elec-
trical resistance of the devices and observing the memristive
effect26.

Electrical characterisation and variability analysis
The devices exhibit clear bipolar RS when they are exposed to
sequences of electrical stimuli of different polarities; however, the
nature of the switching can be controlled depending on the type
of stress applied. When the devices are exposed to sequences of
current-limited (100 µA) ramped voltage stresses (RVS), sharp
switching between a high resistive state (HRS, ≈ 10 nS) and the
low resistive state (LRS, ≈ 8mS) can be observed (Fig. 2a)— after a
forming process at voltages between ≈4 V and ≈8 V). In our
previous study27 we demonstrated that bipolar RS in Au/Ti/h-BN/
Au devices is related to the formation and disruption of a Ti-based
conductive nanofilament across the h-BN stack, probably at the
native defects embedded within the crystalline 2D layered lattice
due to the lower energy for metal penetration at such sites28. For
positive voltages TiX+ go into the dielectric defects and under
negative voltages these ions go back; in this manner, the
conductive nanofilament is formed and disrupted to facilitate
resistive switching operation.
The variability of the switching voltages and the state currents

(shown in Fig. 2b–c) is not the best ever reported29, but similar to
that observed in many other metal-oxide-based memristive
devices reported in the literature9. Also, after forming, if the
devices are subjected to sequences of pulsed voltage stresses
(PVS) the resistive switching can be provoked in an analog
manner, i.e., by inducing many stable resistive states (Fig. 2d, left
plot). This behaviour should be related to the injection of small
amounts of Ti+ ions into the h-BN stack, similar to what happened
during the HRS-to-LRS transition in bipolar RS (Fig. 2a) but in a
smaller quantity and in a more controllable manner. It is
remarkable that resistance variation over time (commonly referred
to as retention) is extremely low (Fig. 2d, right plot); this is an
important feature when trying to use these devices to implement
an ANN because it allows their use as electronic synapses during
the inference process, as demonstrated in our previous
publication26.
Next, we characterised the presence of STDP in our devices by

applying a pair of electrical spikes (i.e., a type of pulsed voltage
stress, see Fig. 3a) that are delayed a specific time from each other
to the top and bottom electrodes of the 5 µm × 5 µm Au/Ti/h-BN/
Au memristors. Figure 3a shows the shape of the pulses applied;
the time at which the spike at the top and bottom electrodes is
applied are named tPRE and tPOST, and the delay between them is
calculated as Δt= tPOST−tPRE. By subtracting the post-spike and
pre-spike voltage signals, we can leave the bottom electrode
grounded and use the composed signal at the top electrode in an
equivalent manner (Fig. 3b). As Fig. 3c–e shows, the device
conductance variation (ΔG) was measured with respect to the
initial conductance (GINITIAL). The devices show good STDP
response, and we are able to control the slope of the exponential
trend by adjusting the duration of the electrical spikes applied
(Sw). This result is remarkable because previous attempts to
measure STDP in similar 5 µm × 5 µm Au/Ti/h-BN/Au memristors
only were able to see a linear trend26, which indicates a rather
poor STDP behaviour. The improvement achieved in this study
may be related to the use of a thicker h-BN stack (≈6-nm-thick in
this study versus ≈2-nm-thick in ref. 26). The asymmetric shape of
the STDP plot should be related to the different composition of
the metallic electrodes (i.e., top Ti and bottom Au), which for the
same spike duration (±Δt) produce different speed for Ti+ ion
migration.
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Fig. 1 Fabrication of synapses based on Au/Ti/h-BN/Au/Ti memristors. a Experimental process followed for the fabrication of the devices,
which can be divided in eight steps. b Large-area optical microscope image of the samples proving that there are no cracks in the h-BN.
c Detailed SEM image of one device, in which h-BN wrinkles on the SiO2 substrate and on the top/bottom electrodes can be observed,
proving he continuity of the h-BN film. d, e Cross-sectional transmission electron microscope image of the h-BN stack, showing a good layered
structure with some native defects (lattice distortions). e corresponds to the area highlighted with a white dashed square in panel d (rotated
90 degrees), in which we indicate the most common type of defects: defective bonding at the top interface with the Au electrode, local
interstitial atoms between the h-BN layers (small arrows), and few-atoms-wide amorphous regions embedded in crystalline 2D layered h-BN
stack (dashed ovals).
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Spiking neural network study
The shape of the STDP plot can be used in the framework of SNNs
to implement the network learning rule. To do so, the most
common methodology is to calculate the fitting parameters A and
τ both for potentiation and depression, using Eq. (1)30:

ΔG
GINITIAL

¼ Aþe
�Δt

τþ forΔt > 0

ΔG
GINITIAL

¼ �A�eþ
Δt
τ� forΔt < 0

8
<

:
(1)

These parameters will allow the calculation of the synaptic
weight variations as shown in the Supplementary Note 1. Hence,
we fit the experimental data obtained during STDP characterisa-
tion to Eq. (1), as shown in Fig. 3c–e. An average fitting for the
distribution can be obtained (solid lines) and two other fittings
that enclose the experimental data distributions (dashed lines) are
also shown. All the fitting parameters are displayed in Table 1; the
values assigned are meaningful from a mathematical point of
view. The time constants both for the potentiation and depression
modelling are the same for a determined spike duration.
Therefore, variability in the STDP, and consequently in the SNN
learning rule, can be concentrated on the study of the variation of
the A+ and A- constants.
We use these fitting parameters to implement the learning rule

in the SNN with an unsupervised learning scheme and evaluate its
main figures of merit. The input layer consists of 784 neurons,
which is designed for the dataset we utilise: the MNIST database
of handwritten digits. A schematic representation of the SNN is
displayed in Fig. 4a. The MNIST dataset is formed by 28 × 28
grayscale pixel images that consist of 70,000 handwritten digits
labelled in the interval [0, 9], divided into a training set (60,000
images) and a test set (10,000 images)31. The excitatory layer (for
data processing) contains the same number of neurons than the

layer with the inhibitory neurons. The neurons of the input layer
are connected in an all-to-all fashion to the excitatory neurons
(see arrows). The excitatory neurons of the processing layer
connect one-to-one to inhibitory neurons; therefore, a spike in the
excitatory neuron will trigger a spike in its corresponding
inhibitory neuron. However, each inhibitory neuron connects to
all excitatory neurons excepts to the one from which it receives
connection. This architecture allows lateral inhibition that leads
the excitatory neurons to compete (see Fig. 4a)32. The inhibitory
and excitatory synaptic conductance ratio needs to be balanced to
modulate lateral inhibition in order to avoid this to have no
influence or, on the contrary, let a winner prevent other neurons
from firing. Class labels are not presented to the network, so the
learning is unsupervised.
We have implemented the synapses of our SNN using STDP as

the learning rule, and used the mathematical expressions
obtained from the modelling of the electrical characteristics of
our Au/Ti/h-BN/Au devices (Fig. 3c–e and Table 1). This learning
rule applies exclusively at synapses between the input layer and
excitatory neurons. The synapses between excitatory and
inhibitory neurons are kept fixed to ensure that lateral inhibition
is neither too strong, preventing other neurons from firing at all,
nor too weak, causing it to have no effect. The learning process is
explained in depth in Supplementary Note 1 — see that the time
constants for potentiation and depression are included in
Supplementary Eqs. 4 and 5 (respectively), and that the A+ and
A− constants are included in Supplementary Eqs. 6 and 7
(respectively). The preexponential constants (A+ and A−) corre-
sponding to the average distribution of STDP experimental data
(solid lines in Fig. 3c–e) were used as reference parameter. The
variability was taken into account by calculating the change in the
A+ and A− parameters (ΔA+= |A+(solid line)−A+(dashed line)|).
Variability was incorporated in the Supplementary Eq. 7; with this

Fig. 2 Resistive switching in Au/Ti/h-BN/Au/Ti memristors. a Experimental current versus applied voltage for different RS cycles in a long
series for our devices (the compliance current used was ICC= 0.1 mA). We have plotted 88 set (blue curve) and reset (red curve) processes.
b Variability analysis accounting for the resistances for the low and high resistance states (RLRS, RHRS) measured at low voltages. c Variability
analysis accounting for the switching voltages for the HRS-to-LRS and LRS-to-HRS transitions (VSET, VRESET). d Voltage and current versus time
plot showing the progressive potentiation of a memristor when applying sequences of PVS. The right panel, which has the same vertical
(current) axis, shows the current versus time plot collected after stopping the PVS at a specific current level.
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new equation we obtained the change in the synaptic weights
and repeated the SNN training process. Then we performed a
study considering a different number of neurons for our network
(Fig. 4b, c) as well as a different number of training epochs (Fig. 4d,
e) and achieve better recognition accuracy for the MNIST dataset
as we increase the number of neurons. We observe a saturation

behaviour in terms of accuracy for a number of epochs higher
than 3. Variability affects the results for a low number of neurons;
however, for 400 neurons, and specially for 800 neurons, its
influence is much lower due to the inherent stochasticity
behaviour of the SNN. In fact, slightly higher accuracy values are
obtained if variability is considered (Fig. 4c and e).
In summary, we have evaluated the potential of Au/Ti/h-BN/Au

memristors to implement spiking neural networks for image
recognition. We have fabricated and characterised the devices to
study the different features needed to implement synapses in the
context of neuromorphic computing. The memristive behaviour in
terms of resistive switching and variability was good both under
ramped and pulsed input signals. The spike timing dependant
plasticity and its corresponding variability were measured and
modelled. These data, used as the learning rule in SNNs, were
employed to train the network, considering different number of
neurons and epochs. The role of STDP variability was analysed and
it was shown that, for the architecture employed, 400 or more
neurons are needed to ensure that the variability of our devices
did not penalise the network recognition accuracy.

METHODS
Device fabrication
The structure of the memristors from top to bottom was 40 nm
Au/10 nm Ti/6-nm h-BN/40 nm Au, which were fabricated on a Si
wafer with 300 nm SiO2 on top. First, we deposit the bottom
electrodes, which consisted of a squared pad of 100 µm × 100 µm

Fig. 3 STDP function in Au/Ti/h-BN/Au/Ti memristors. a Spiking protocol applied to the memristors to measure STDP. Different spike widths
(Sw) can be employed. In our case, we made use of the following values for the spike widths, Sw= 1 μs, Sw= 100 μs, Sw= 10ms. The post-spike
and pre-spike are subtracted to ease the measurement process, the resulting signal generated (shown in the insets of the next figure, b) is
applied to the top electrode while the bottom one was grounded. b Theoretical memristor STDP behaviour; the signals employed for the
measurements are shown as insets, they are generated as a subtraction of spikes (post-spike – pre-spike) with different delays (Δt= tpost−tpre).
c–e STDP function measured in the devices. The input signals were made of sequences of pre-spike and post-spike pairs with different delays
to characterise the depression and potentiation regimes. The spike width was c 1 μs, d 100 μs and e 10ms. The GINITIAL values for each curve
were the same for coherence; i.e., the initial conductance prior to the application of the spikes was the same in every point of the same plot, to
make the ΔG/GINITIAL comparable along the curves shown. The solid lines show the best fitting in each case for the experimental data. The
dashed lines are calculated to enclose the experimental data distributions, maintaining the same time constant parameters (τ+, τ-) for the
three curves corresponding to depression or potentiation (the fitting constants, according to Eq. 1, to reproduce de experimental data
(symbols) of the STPD learning window are given in Table 1).

Table 1. Fitting parameters for the mathematical representation of
the STDP measured.

Line fitted Fitting
variable

Potentiation Depression

1 μs 100 μs 10ms 1 μs 100 μs 10ms

Top
(dashed line)

A+/A− 0.55 0.35 1.05 1 0.6 0.5

τ+/τ− 0.5 μs 50 μs 16ms 0.3 μs 70 μs 16ms

Average
(solid line)

A+/A− 0.4 0.3 0.9 1.6 1 0.6

τ+/τ− 0.5 μs 50 μs 16ms 0.3 μs 70 μs 16ms

Bottom
(dashed line)

A+/A− 0.1 0.1 0.7 2.2 1.3 0.65

τ+/τ− 0.5 μs 50 μs 16ms 0.3 μs 70 μs 16ms

Equation 1 is employed along with the data in columns 3–5 for memristor
conductance potentiation modelling in the STDP measurements shown in
Fig. 3c–e, for different temporal spike widths. Equation 1 is employed along
with the data in columns 6–8 for memristor conductance depression
modelling in the STDP measurements shown in Fig. 3c–e, for different
temporal spike widths.
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and a metallic wire with a width of 5 µm; the transition between
them was done by reducing the width from 100 µm to 5 µm. The
electrodes were deposited by photolithography, electron beam
evaporation and lift-off, using a mask aligner MJB4 from SUSS
MicroTech and an electron beam evaporator PVD 75 from Kurt
Lesker. Below the 40 nm Au bottom electrode we used a 10 nm Ti
adhesion layer, but we did not mention it throughout the text
because the current does not flow along or across it. After the
deposition of the bottom electrode, a sheet of commercially-
available ≈18-layers-thick h-BN (grown independently on a Cu
substrate by CVD method) was transferred on the bottom
electrodes.

Device characterisation
The devices were characterised by using a Keysight B1500A
semiconductor parameter analyser connected to a probe station
(Karl Suss PSM6). We employed two different measuring units: i)
the B1511B medium power source measurement unit (MPSMU)
module for quasi-static ramped voltage stress, and ii) the B1530
module, which is a waveform generator and fast measurement
unit (WGFMU) that is ideal to apply the pulsed voltage stresses.

SNN simulation
The SNN architecture is described in Fig. 4a in the main
manuscript. This network has been developed using BindsNet33,
a Python library built on top of PyTorch34, so its network models
can easily be executed on CPU or GPU. It implements a wide
variety of neurons, input encoding methods and several learning
methods such as STDP. The details regarding the learning rule and
the mathematical models employed in the implementation are
described in the supplementary information. Both during training
and testing each input image is presented to the network for
350ms in the form of Poisson-distributed spike trains, with firing
rates proportional to the intensity of the pixels of the MNIST
images, with firing rates between 0 (black pixel) and 128 Hz (white
pixel). After training is done, we disable the postsynaptic spike (to
prevent further potentiation/depression), fix each neuron’s spiking
threshold, and assign a class to each neuron, based on its highest
response to the ten classes of digits over one presentation of
the training set. This is the only step where labels are used, i.e., for
the training of the synaptic weights we do not use labels. The

response of the class-assigned neurons is then used to measure
the classification accuracy of the network on the MNIST test set.
The predicted digit is determined by averaging the responses of
each neuron per class and then choosing the class with the
highest average firing rate. We employed a 2 nodes Intel Xeon E5-
2634, 128 GB DDR4 2400 MHz, using one GPU at a time. For 800
neurons (including variability in the learning rule), the training
time was around 120,000 s, for 400 neurons the training time was
around 80,000 s.
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