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A B S T R A C T   

In this work, the unipolar resistive switching behaviour of Ni/HfO2/Si(n+) devices is studied. The structures are 
characterized using both current and voltage sweeps, with the device resistance and its cycle-to-cycle variability 
being analysed in each case. Experimental measurements indicate a clear improvement on resistance states 
stability when using current sweeps to induce both set and reset processes. Moreover, it has been found that 
using current to induce these transitions is more efficient than using voltage sweeps, as seen when analysing the 
device power consumption. The same results are obtained for devices with a Ni top electrode and a bilayer or 
pentalayer of HfO2/Al2O3 as dielectric. Finally, kinetic Monte Carlo and compact modelling simulation studies 
are performed to shed light on the experimental results.   

1. Introduction 

In the last few years, several emerging technologies for non-volatile 
memories are being studied to work as storage-class memories [1]. 
Among these technologies, resistive random-access memories (RRAMs) 
based on the resistive switching (RS) effect are of great interest [2–4]. 
Their outstanding features allow to bridge the gap between flash 
memories and the low latency dynamical memories. RRAMs have shown 
great potential for scalability, high-speed operation (<10 ns), low power 
consumption and CMOS compatibility [5–7]. In addition, they also show 
remarkable endurance (above >1010 cycles [8]), retention [9–11] and 
large HRS/LRS resistance ratios (>100) [1]. This technology is being 
used by different companies commercially, such as TSMC for its 40 nm 
[12], 28 nm [13] and 22 nm [14] nodes, and INTEL for its 22 nm [15] 
node. Moreover, RS devices are not only key elements for non-volatile 
memories [1], but have also proven outstanding properties for appli-
cations such as hardware cryptography [16–18] and neuromorphic 
computation [9,16,19]. 

As stated before, RRAMs are based on the resistive switching (RS) 
effect, which allows the devices to reversibly change their electrical 
resistance by applying a certain electric field [9]. The programmed 

resistance value remains without the application of any external voltage, 
which is what makes these devices good candidates for non-volatile 
memories. As RRAM devices are usually metal-insulator-metal or 
metal-insulator-(highly doped) semiconductor structures, this change in 
the device's resistance is explained by the modification of an energy 
barrier at one of the dielectric/electrode interfaces or by the formation 
of a conductive filament (CF) that short-circuits the electrodes [20–22]. 
Filamentary charge conduction linked to CF formation is the most 
common RS operation; the CF is created for the first time in the forming 
process (for forming-free devices this stage is not necessary), which 
demands higher voltages than the subsequent switching processes. After 
the forming, the filament can be disrupted (reset process) and rebuilt 
(set process) repeatedly, switching the device resistance state from high 
(HRS) to low (LRS) or vice versa, respectively. In addition, intermediate 
states are also allowed and controllable in some switching devices, 
which makes them specially interesting for the implementation of arti-
ficial synapses in neuromorphic computation, as this multilevel opera-
tion allows to electrically adjust the synaptic weight between neurons 
[23,24]. This filamentary model is widely accepted by the scientific 
community [7,25–27] and has been experimentally demonstrated in 
several previous works [20,28–30]. 
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Resistive switching can either be bipolar (BRS) if the set and reset 
occur at different polarities or unipolar (URS) when both transitions 
happen at the same voltage polarity. When the electrodes are inert 
metals, the BRS is usually due to electron hopping through dielectric 
regions with a high concentration of oxygen vacancies, which shape the 
conductive filaments (known as valence change mechanism or VCM 
[10,31,32]). However, if one of the electrodes is an electrochemically 
active metal (Ag, Cu or Ni), it may act as a source of highly mobile metal 
cations that may diffuse through the insulator, forming a metallic fila-
ment (electrochemical metallization mechanism or ECM) [2,27,33]. 

Thermal effects are known to play a key role to analyse RS in RRAMs 
[2,9,10,34]. They are particularly important in some types of URS de-
vices, as they are based on the thermochemical mechanism (TCM), in 
which thermochemical processes dominate over the electrochemical 
ones [35–39]. It has been shown for URS devices with Ag electrodes 
[40–42], as well as for Ni/HfO2/Si-n+ samples [33,43–46] that Joule 
heating is key to explain the physics that lies behind RS operation. 

As stated earlier, RRAMs are serious candidates to replace other 
technologies in the non-volatile memory realm. However, the cycle-to- 
cycle (C2C) variability hinders their progress to become the main-
stream technology in the industry. This is especially apparent in uni-
polar resistive switching devices, which has led to a decrease in the 
number of scientific studies of samples presenting URS [47], despite the 
fact that they usually show much greater low to high resistance state 
ratio and easier circuit integration (because of their unipolar nature) 
when compared to their bipolar counterparts [48]. In this context, 
different alternatives have been explored to assess the potential of these 
devices; for instance, the use of the device current instead of the voltage 
to control RS operation. The use of the current to induce RS allows a 
better control of the device resistance in HfO2-based RRAM devices, 
especially in the set process [49,50]. We deal with this current-driven RS 
approach here to characterize Ni/HfO2/Si-n+ cells from the experi-
mental and simulation viewpoint. In addition, we consider Ni/HfO2/ 
Al2O3/Si-n+ and Ni/HfO2/Al2O3/HfO2/Al2O3/HfO2/Si-n+ structures to 
extend our study since the presence of the alumina layer in the dielectric 
stack modifies the thermal effects [51] and allows to thermal engineer 
the dielectric stacks to improve RS operation. To shed light on these 
issues, the set and reset voltages, the power consumption at RS transi-
tions, and the variability and thermal effects are studied in depth 
comparing current and voltage-controlled resistive switching and the 
physics behind RS by means of COMSOL-based simulations. 

2. Material and methods 

Ni/insulator/Si stacks were fabricated on (100) n-type Czochralski 
silicon wafers with resistivity in the (0.007–0.013) Ω cm range. Both 
HfO2 and Al2O3 layers were grown at 225 ◦C using Atomic Layer 
Deposition in a Cambridge NanoTech Savannah 200 system equipped 
with tetrakis(dimethylamido)‑hafnium (TDMAH) and trimethylalumi-
num (TMA) as Hf and Al precursors, respectively, H2O as oxidant pre-
cursor and N2 as carrier and purge gas. Three different types of devices 

are studied in the present work, namely a monolayer Ni/HfO2(20 nm)/ 
Si-n+, a bilayer Ni/HfO2(10 nm)/Al2O3(10 nm)/Si-n+ and a pentalayer 
Ni/HfO2(4 nm)/Al2O3(4 nm)/HfO2(4 nm)/Al2O3(4 nm)/HfO2(4 nm)/ 
Si-n+. The 200 nm thick Ni electrode was deposited by magnetron 
sputtering. The resulting devices are squared cells of 60 × 60 μm2. All 
fabrication details have been published and can be found at [51]. A 
schematic cross-section of the devices can be found in Fig. 1. 

Electrical measurements were made by means of a HP4155B semi-
conductor parameter analyzer. Voltage and current sweeps were applied 
to the top electrode (TE) of the devices, while the bottom electrode (BE) 
remained grounded in all cases. Current and voltage compliances were 
used when inducing a set process by applying voltage, or a reset process 
applying current, respectively. After each transition, a pulse at 0.5 V was 
applied to the device to measure the current at a low voltage and ensure 
that the transition had been completed by checking whether this value 
was over or under a current limit (Ilim) obtained experimentally. The 
automated measuring process is further detailed on a flowchart in Fig. 2. 
The equipment was connected to a computer via GPIB and controlled 
using Agilent VEE software. 

3. Results and discussion 

3.1. Experimental approach 

After an electroforming process carried out by applying a positive 
voltage ramp and using a current compliance of 100 μA, Ni/HfO2/Si-n+

devices showed unipolar resistive switching. Thus, both set and reset 
processes take place at a positive voltage polarity, with the set process 
occurring at higher voltages but consuming less power (because of the 
higher currents involved in the reset). The typical current-voltage (I-V) 
curves are shown in Fig. 3a, obtained under ramped voltage stress 
(RVS), the set was observed in a [1.8 V, 2.5 V] voltage interval, while the 
reset occurred in the [1.2 V, 2 V] range. A current compliance of 1 mA 
was used for the set transition to avoid irreversibly breaking the sample. 
As stated in the introduction section, the URS in these samples is driven 
by Joule heating inducing both the formation and rupture of CFs; high 
mobility Ni atoms diffuse from the top electrode into the dielectric 
creating a metallic conductive path [43,52]. The I-V curve is obtained by 
measuring the current through the device while applying a voltage bias. 
This is the usual characterization technique for both bi- and unipolar RS 
devices. As the aim of this work is to uncover the consequences and 
possible benefits of current controlled RS, we obtained a very similar 
hysteretic curve by applying ramped current stress (RCS) and measuring 
the voltage across the device (with a voltage compliance of 2 V). We 
shall call this a voltage-current V-I curve, which is depicted in Fig. 3b. 

Hereby we present an analysis of the charge, flux and energy, as 
these magnitudes control de Joule heating, which, as mentioned in the 
introduction, is essential for URS. Charge versus flux (Q-ϕ) and energy 
versus flux (E-ϕ) curves are plotted in Fig. 4 a-b for the reset cycles 
obtained under RVS (see Eqs. 1–3). The charge can be calculated from 
the conventional I-V curves as follows: 

Fig. 1. Schematic cross-sections of the fabricated a Ni/HfO2/Si-n+ and b Ni/HfO2/Al2O3/Si-n+ devices.  
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Fig. 2. a Schematic of the automated measuring process of the Ni/HfO2/Si-n+ devices. The algorithm shows the necessary conditions to ensure that the transition has 
been completed for both voltage and current sweeps. b Schematic of the circuit used for the electrical measurements, the HP4155B semiconductor parameter 
analyzer allows for the application of voltage and current via its Source Measure Units (SMUs). TE and BE stand for top electrode and bottom electrode, respectively. 

Fig. 3. Experimental a I-V and b V-I curves of a Ni/HfO2/Si-n+ device, LRS and reset processes are depicted in red, while HRS and set processes appear in blue. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

G. Vinuesa et al.                                                                                                                                                                                                                                



Microelectronic Engineering 276 (2023) 112008

4

Q(t) =
∫ t

0
i(t′ ) dt

′ (1)  

where i(t) and v(t) are the measured current and voltage. And the flux 
can be computed as: 

Φ(t) =
∫ t

0
v(t′ ) dt

′ (2) 

Thus, the corresponding energy value can be derived by the 
equation: 

E(t) =
∫ t

0
i(t′ )v(t

′

) dt
′ (3) 

At the reset point, the charge, flux and energy obtained are named as 
Qreset, ϕreset and Ereset. The Qreset versus ϕreset experimental distributions 
are plotted in Fig. 4 c-d along with the Ereset versus ϕreset distributions for 
the RVS cycles. The cumulative distribution functions (CDF) for ϕreset, 
Qreset and Ereset, corresponding to these experimental distributions, are 
shown in Fig. 4 e-g. See that the distribution functions are much more 

abrupt in Fig. 4f and g. These results make sense since, as stated before, 
these magnitudes control the Joule heating and, therefore, the CF tem-
perature that ultimately triggers the reset process (which is known to be 
a thermal-run-away process with positive feedback) [34,46]. 

In Fig. 5a the set voltage CDFs are shown both for I-V and V-I mea-
surements, while their corresponding set currents are presented in 
Fig. 5b. Lower set voltages are obtained in the V-I case, while there is no 
difference between the two measurement approaches in the case of the 
set currents. The algorithms employed to extract the set voltages in the I- 
V curves are given in [53]. For the V-I curves, the set voltages are found 
at the point where the highest voltage change is obtained. Furthermore, 
the same observation can be made when analysing the reset transition. 
Reset voltages are lower using RCS in comparison with the voltage- 
controlled approach (Fig. 5c); while reset currents were similar for 
both current and voltage measurements, as it can be seen in Fig. 5d. The 
algorithm used for the reset voltage extraction can also be found at [53]. 

To obtain significant information about the changes in the device 
resistance after each transition, the current was read at 0.5 V after the set 
or reset process (Fig. 2). This was made for both RVS and RCS using the 

Fig. 4. a Charge versus flux data, b energy versus flux data for the Ni/HfO2/Si-n+ device measured under RVS (Fig. 3a). c Extracted charge and flux experimental 
data at the reset point, d energy versus flux at the reset point for the devices under study measured under RVS (Fig. 3a). Cumulative distribution functions for e ϕreset, 
f Qreset and g Ereset for the devices under study measured employing RVS (Fig. 3a). 
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following measurement sequence: (i) voltage or current sweep to trigger 
the set process, (ii) voltage pulse of 0.5 V to measure the current, (iii) 
voltage or current sweep to trigger the reset process, (iv) voltage pulse 
of 0.5 V to measure the current. Fig. 6a and b (HfO2 monolayer) show 
the current measured at 0.5 V (steps (ii) and (iv)) after each set or reset 
transition versus the number of cycles. The resistance uniformity along 
cycling under RCS is notorious in comparison to RVS. Although the 
resistance variability in the LRS is similar for both cases, HRS variability 
is clearly lower in the RCS case. 

In order to shed light on the variability issue, we also considered 
devices with more complex dielectrics such as Ni/HfO2/Al2O3/Si-n+

bilayers and Ni/HfO2/Al2O3/HfO2/ Al2O3/HfO2/Si-n+ pentalayers. We 
have observed a similar behaviour for the bi- (Fig. 6 c-d) and pentalayer 
(Fig. 6 e-f) devices in terms of the RCS advantages. Variability is lower 
due to uniformity in Joule heating under RCS, as thermal effects are 
controlled by the device current. 

These observations are supported by the calculation of the standard 
deviation of the HRS and LRS under both RCS and RVS for the three 
samples, which are shown in Table 1. The standard deviations show that 
applying current sweeps positively impacts both resistance states' vari-
ability when compared to the results obtained by applying voltage 
sweeps. HRS standard deviation decreases in one order of magnitude in 
all cases when using RCS, also decreasing one order of magnitude for the 
LRS of the bilayer device. In the monolayer and pentalayer structures, 
the standard deviation of the LRS also decreases, although within the 
same order of magnitude, when using RCS. When analysing the mean 
values, it can be seen that the mean current value obtained decreases 
greatly for the HRS in all cases, while the LRS mean values remain 
similar under RCS and RVS. 

Fig. 7 shows that the power involved in RS processes is lower for RCS 
than for RVS operation. These tendency holds for both set and reset 

transitions in all the dielectric stacks considered. Again, the efficiency in 
controlling Joule effects under RCS is behind the physics underlying this 
behaviour. This draws even more attention to the reset process, as it 
consumes less power while also delivering lower current values (see 
mean values on Table 1) under current control. Set and reset power 
values are obtained by multiplying current and voltage values at the 
point where the voltage presents a higher change in its value. 

3.2. Simulation approach 

A 3D finite elements approach was employed to simulate the devices 
under study; in particular, the Ni/HfO2/Si-n+ cell. The different mate-
rials and their properties were described making use of the commercial 
simulation software COMSOL Multiphysics. A cylindrical CF was 
assumed, whose radius was modified to reproduce the experimental RS 
processes. 

In addition to the ohmic CF, we have also included a constriction 
within the CF that corresponds to an atomic-size narrowing, where 
electron transport is ballistic and quantum effects show up. The trans-
port regime can be described with the Landauer's formalism [54–56]. 
Under the assumption of a transmission probability function resembling 
an inverted parabolic function, Landauer's integral for the zero- 
temperature limit can be analytically solved. The current across the 
constriction can be obtained as follows, 

I =
2eN

h

{

eV +
1
αln

[
1 + e[α(Φ− βeV) ]

1 + e{α[Φ+(1− β)eV ] }

]}

(4)  

where e is the electron charge, h is the Planck's constant, N is the number 
of active channels in the constriction, α affects the shape of the potential 
barrier, Φ stands for the potential barrier height, β is the fraction of the 
potential that drops in one of the constriction contacts and (1- β) the 

Fig. 5. Cumulative distribution functions for a Vset under RVS (black) and RCS (pink), b Iset under RVS (red) and RCS (dark green), c Vreset under RVS (light green) 
and RCS (maroon), and d Ireset under RVS (blue) and RCS (orange), for the Ni/HfO2/Si-n+ device. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Fig. 6. Current values measured at 0.5 V after each set (LRS- red) and reset (HRS-blue) transition, carried out under RVS (left column) and RCS (right column) for the 
Ni/HfO2/Si-n+ (a and b), Ni/HfO2/Al2O3/Si-n+ (c and d) and Ni/HfO2/Al2O3/HfO2/Al2O3/HfO2/Si-n+ (e and f) samples. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Standard deviation (σ) and mean (μ) values of the HRS and LRS under RVS and RCS for the three measured samples, a monolayer Ni/HfO2(20 nm)/Si-n+, a bilayer Ni/ 
HfO2(10 nm)/Al2O3(10 nm)/Si-n+ and a pentalayer Ni/HfO2(4 nm)/Al2O3(4 nm)/HfO2(4 nm)/Al2O3(4 nm)/HfO2(4 nm)/Si-n+.    

HRS LRS 

σ (A) μ (A) σ (A) μ (A) 

Monolayer 
RVS 1.60 • 10− 6 2.11 • 10− 6 2.49 • 10− 5 1.58 • 10− 4 

RCS 3.60 • 10− 7 6.79 • 10− 7 1.53 • 10− 5 1.70 • 10− 4 

Bilayer 
RVS 1.79 • 10− 6 1.47 • 10− 6 1.03 • 10− 4 2.36 • 10− 4 

RCS 2.42 • 10− 7 5.72 • 10− 7 1.23 • 10− 5 1.51 • 10− 4 

Pentalayer RVS 1.11 • 10− 6 1.24 • 10− 6 3.19 • 10− 5 1.40 • 10− 4 

RCS 2.43 • 10− 7 2.05 • 10− 7 1.58 • 10− 5 1.28 • 10− 4  
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Fig. 7. Cumulative distribution functions for the 
power consumption for both reset (left column) and 
set (right column) transitions for Ni/HfO2/Si-n+ (a - 
b), Ni/HfO2/Al2O3/Si-n+ (c - d) and Ni/HfO2/Al2O3/ 
HfO2/Al2O3/HfO2/Si-n+ (e - f) samples. Panels (a, c, 
e) show the power absorbed by the reset transition 
when applying voltage (red) and current (yellow). 
Panels (b, d, f) show the power absorbed by the set 
transition when applying voltage (green) and current 
(blue). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   
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other fraction. The simulation scheme is equivalent to the one proposed 
in [26,51] for the same kind of devices. 

In addition, the CF radius evolution is described assuming an average 
Arrhenius-like mechanism to account for the variation of the high con-
centration regions of metallic atoms that shape the CF and lead to the set 
and reset processes [57]. 

dr
dt

= ±A e−
Ea
kT (5)  

where r stands for the CF radius (cylindrical coordinates), A stands for a 
fitting preexponential constant and Ea is the activation energy of the 
main physical mechanism behind the CF variation (we simplify the 
model under the assumption that the mechanism described in Eq. 2 has 
the strongest influence in the CF kinetics; a different simulation 
approach, accounting for the different physical mechanisms is based on 
kinetic Monte Carlo [33]). The CF thermal conductivity was 11 WK− 1 

m− 1, while it was 90 (148) WK− 1 m− 1 for the Ni (Silicon) electrode, and 

1 WK− 1 m− 1 for HfO2; the CF electrical conductivity was 2 × 105 Ω− 1 

m− 1 and the activation energy, Ea = 0.84 eV. 
We show in Fig. 8 that the simulation tool reproduces reasonably 

well the experimental measurements once the CF radius and the QPC 
model parameters are fitted. 

See that both I-V and V-I operation regimes are correctly described, 
including the set and reset voltages, the current magnitude and the 
curves shape. This is also seen in Fig. 9, where a comparison with a 
group of experimental curves (note the cycle-to-cycle variability) is 
shown along with simulated ones. 

Our scheme is in line with previous simulation approaches; however, 
it makes no difference when V-I and I-V operation regimes are compared 
since it is a deterministic simulator. To shed light on this issue, we have 
plotted in Fig. 10 the product of temperature and electric field versus 
voltage drop in the device; these two magnitudes drive ion diffusion in 
the dielectric and, therefore, control RS. In this respect, the plot is 
representative to compare the V-I and I-V operation regimes. See that 
identical results are found. It is important to note that the simulation 

Fig. 8. Simulated (red lines) and experimental (black lines) curves for Ni/HfO2/Si-n+ devices. a, c I-V operation regime, b, d V-I operation regime. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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approaches are different: when the voltage is fixed externally, this is 
easily transformed to boundary conditions in our simulation domain; 
however, if the current is fixed, we employ average probes to estimate 
the device voltage. We have also studied the output of current and 
voltage ramps, obtaining non-significative differences when making a 
fair comparison in terms of initial conditions (voltage and current 
magnitudes). 

Considering the experimental results, it is clear that the V-I operation 
regime influences in a different way the physical processes behind RS. 
Consequently, a different modelling scheme is needed in this case (it 
might be related to modifications in Eq. 2, a reduction of the activation 
energy, or/and even linked to an increase of the heat generation term 
within the heat equation). Thus, the development of a new model would 
need of new experiments and indirect analysis of the experimental RS 
behaviour in our devices; in this respect, it is out the scope of this paper. 
As a general consideration, it is clear that the V-I regime influences RS 
operation, accelerating the physical mechanisms that create and destroy 
the CFs. These effects result in lower operation voltages (and power 
consumption) as well as lower variability. Therefore, it offers clear ad-
vantages for IC development in the non-volatile memories and neuro-
morphic computing realms. 

In order to complete the simulation study and shed light on the 
resulting current/voltage signal in the RVS and RCS, respectively, we 
have used a different simulation approach based on a compact circuital 
model described in ref. [58]. This model was previously fitted and 
successfully used for studying reset transitions in Ni/HfO2(20 nm)/Si-n+

devices under different operation regimes (RVS and constant voltage 
stress) [58]. Fig. 11a shows the simulated I-V curve obtained under RVS 
(black line) and V-I under RCS (red lines) with the same slopes than the 
experimental input signals (0.4 V/s and 65 μA/s). The reset voltage and 
current are slightly lower under the RCS. When current and voltage are 
plotted versus time (insets in Fig. 11a), we can appreciate that the 
resulting signals are different under the RVS and RCS. However, if we 
simulate RCS with a higher slope (resulting in current and voltage sig-
nals closer to those obtained under RVS, green lines in Fig. 11a), the 
current and reset voltages are quite similar. As a conclusion, as 
happened with the previously exposed simulation approach based on a 
3D finite elements solver, there is no difference between RVS and RCS, 
as long as the resulting current/voltage signals are similar. 

Finally, Fig. 11b shows the simulated energy obtained by the time 
integration of the power. RCS with a lower slope leads to the highest 
total dissipated energy because the reset transition is delayed, even 
though the reset current/voltage are the lowest, this is consistent with 
the Preset shown in Fig. 7a. RVS and RCS with higher slope produce quite 
similar dissipated energy, although current and voltage (and, therefore, 
energy) is slightly higher under RCS with 158 μA/s. 

4. Conclusions 

Carrying out the set and reset transitions applying current to RRAM 
HfO2-based devices reduces set and reset voltages, as well as cycle-to- 
cycle variability in comparison with conventional voltage driven resis-
tive switching operation. In addition, current controlled RS proves to be 
the most efficient method of carrying out the transitions between 
resistance states, as the power consumed is lower than voltage 
controlled resistive switching. This may be due to a better control of the 
Joule heating when applying current, as thermal effects are controlled 
by the device current. In addition, we have proven that, when employing 
conventional finite-element RRAM simulators, no apparent differences 
between I-V and V-I operation are obtained. Consequently, there is a 
need of further modelling in the case of V-I resistive switching since this 
regime influences in a different way the physical mechanisms behind the 
operation of the studied devices. 

Fig. 10. Simulation of Ni/HfO2/Si-n+ devices; product of the temperature and 
the absolute value of the electric field versus the voltage value both for the I-V 
and V-I operation regimes. 

Fig. 9. Simulated (red lines) and experimental (black lines) curves for Ni/HfO2/Si-n+ devices. a I-V operation regime, b V-I operation regime. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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B. Magyari-Köpe, E. Yalon, A. Kenyon, M. Buckwell, A. Mehonic, A. Shluger, H. Li, 
T.-H. Hou, B. Hudec, D. Akinwande, R. Ge, S. Ambrogio, J.B. Roldan, E. Miranda, 
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[34] J.B. Roldán, G. González-Cordero, R. Picos, E. Miranda, F. Palumbo, F. Jiménez- 
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[54] E. Miranda, J. Suñé, Analytic modeling of leakage current through multiple 
breakdown paths in SiO2 films, in: IEEE International Reliability Physics 
Symposium Proceedings, 2001-January, 2001, pp. 367–379, https://doi.org/ 
10.1109/RELPHY.2001.922929. 
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