308 research outputs found

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201

    Composing first species counterpoint with a variable neighbourhood search algorithm

    Get PDF
    In this article, a variable neighbourhood search (VNS) algorithm is developed that can generate musical fragments consisting of a melody for the cantus firmus and the first species counterpoint. The objective function of the algorithm is based on a quantification of existing rules for counterpoint. The VNS algorithm developed in this article is a local search algorithm that starts from a randomly generated melody and improves it by changing one or two notes at a time. A thorough parametric analysis of the VNS reveals the significance of the algorithm's parameters on the quality of the composed fragment, as well as their optimal settings. A comparison of the VNS algorithm with a developed genetic algorithm shows that the VNS is more efficient. The VNS algorithm has been implemented in a user-friendly software environment for composition, called Optimuse. Optimuse allows a user to specify a number of characteristics such as length, key and mode. Based on this information, Optimuse 'composes' both cantus firmus and first species counterpoint. Alternatively, the user may specify a cantus firmus, and let Optimuse compose the accompanying first species counterpoint. © 2012 Taylor & Francis

    Long-Lasting Consequences of Neonatal Maternal Separation on Social Behaviors in Ovariectomized Female Mice

    Get PDF
    Maternal separation (MS) stress is known to induce long-lasting alterations in emotional and anxiety-related behaviors, but effects on social behaviors are not well defined. The present study examined MS effects on female social behaviors in the social investigation (SIT) and social preference (SPT) tests, in addition to non-social behaviors in the open-field (OFT) and light-dark transition (LDT) tests in C57BL/6J mice. All females were tested as ovariectomized to eliminate confounding effects of endogenous estrogen during behavioral testing. Daily MS (3 hr) from postnatal day 1 to 14 did not affect anxiety levels in LDT, but were elevated in OFT with modified behavioral responses to the novel environment. Furthermore, MS altered social investigative behaviors and preference patterns toward unfamiliar stimulus mice in SIT and short- and long-term SPT paradigms. In SIT, MS reduced social investigation duration and increased number of stretched approaches towards both female and male unfamiliar stimulus mice, suggesting increased social anxiety levels in MS females. Similarly, MS heightened levels of social anxiety during short-term SPT but no MS effect on social preference was found. On the other hand, MS females displayed a distinctive preference for female stimuli, unlike control females, when tested for long-term SPT over a prolonged period of 5 days. Evaluation of FosB expression in the paraventricular nucleus, medial and central amygdala following stimulus exposure demonstrated greater number of FosB immunopositive cells in all three brain regions in MS females compared to control females. These results suggest that MS females might differ in neuroendocrine responses toward unfamiliar female and male opponents, which may be associated with modifications in social behaviors found in the present study. Taken together, this study provides new evidence that early life stress modifies female social behaviors by highlighting alterations in behavioral responses to situations involving social as well as non-social novelty

    Minor shift in background substitutional patterns in the Drosophila saltans and willistoni lineages is insufficient to explain GC content of coding sequences

    Get PDF
    BACKGROUND: Several lines of evidence suggest that codon usage in the Drosophila saltans and D. willistoni lineages has shifted towards a less frequent use of GC-ending codons. Introns in these lineages show a parallel shift toward a lower GC content. These patterns have been alternatively ascribed to either a shift in mutational patterns or changes in the definition of preferred and unpreferred codons in these lineages. RESULTS AND DISCUSSION: To gain additional insight into this question, we quantified background substitutional patterns in the saltans/willistoni group using inactive copies of a novel, Q-like retrotransposable element. We demonstrate that the pattern of background substitutions in the saltans/willistoni lineage has shifted to a significant degree, primarily due to changes in mutational biases. These differences predict a lower equilibrium GC content in the genomes of the saltans/willistoni species compared with that in the D. melanogaster species group. The magnitude of the difference can readily account for changes in intronic GC content, but it appears insufficient to explain changes in codon usage within the saltans/willistoni lineage. CONCLUSION: We suggest that the observed changes in codon usage in the saltans/willistoni clade reflects either lineage-specific changes in the definitions of preferred and unpreferred codons, or a weaker selective pressure on codon bias in this lineage

    Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress

    Full text link
    [EN] Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.The work of the authors was supported by grants from Ministerio de Economía y Competitividad (BFU2011- 23326 and BFU2016-75792-R).Pascual-Ahuir Giner, MD.; Manzanares-Estreder, S.; Timón Gómez, A.; Proft ., MH. (2017). Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress. Current Genetics. 64(1):63-69. https://doi.org/10.1007/s00294-017-0724-5S6369641Aguilera J, Prieto JA (2001) The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr Genet 39:273–283Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144Alepuz PM, Jovanovic A, Reiser V, Ammerer G (2001) Stress-induced map kinase Hog1 is part of transcription activation complexes. Mol Cell 7:767–777Alepuz PM, de Nadal E, Zapater M, Ammerer G, Posas F (2003) Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J 22:2433–2442Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187Babazadeh R, Lahtvee PJ, Adiels CB, Goksor M, Nielsen JB, Hohmann S (2017) The yeast osmostress response is carbon source dependent. Sci Rep 7:990Bender T, Pena G, Martinou JC (2015) Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO J 34:911–924Berry DB, Gasch AP (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580–4587Bilsland-Marchesan E, Arino J, Saito H, Sunnerhagen P, Posas F (2000) Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol 20:3887–3895Brewster JL, Gustin MC (2014) Hog 1: 20 years of discovery and impact. Sci Signal 7:re7Clotet J, Posas F (2007) Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol 428:63–76Clotet J, Escote X, Adrover MA, Yaakov G, Gari E, Aldea M, de Nadal E, Posas F (2006) Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 25:2338–2346Cook KE, O’Shea EK (2012) Hog1 controls global reallocation of RNA Pol II upon osmotic shock in Saccharomyces cerevisiae. Genes Genomes Genetics 2:1129–1136de Nadal E, Posas F (2015) Osmostress-induced gene expression—a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 282:3275–3285de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735–740de Nadal E, Casadome L, Posas F (2003) Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol 23:229–237de Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374Duch A, de Nadal E, Posas F (2013a) Dealing with transcriptional outbursts during S phase to protect genomic integrity. J Mol Biol 425:4745–4755Duch A, Felipe-Abrio I, Barroso S, Yaakov G, Garcia-Rubio M, Aguilera A, de Nadal E, Posas F (2013b) Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature 493:116–119Escote X, Zapater M, Clotet J, Posas F (2004) Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 6:997–1002Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A (2005) A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076Gonzalez R, Morales P, Tronchoni J, Cordero-Bueso G, Vaudano E, Quiros M, Novo M, Torres-Perez R, Valero E (2016) New genes involved in osmotic stress tolerance in Saccharomyces cerevisiae. Front Microbiol 7:1545Ho YH, Gasch AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet 61:373–382Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45Hong SP, Carlson M (2007) Regulation of snf1 protein kinase in response to environmental stress. J Biol Chem 282:16838–16845Li SC, Diakov TT, Rizzo JM, Kane PM (2012) Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress. Eukaryot Cell 11:282–291Maeta K, Izawa S, Inoue Y (2005) Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280:253–260Manzanares-Estreder S, Espi-Bardisa J, Alarcon B, Pascual-Ahuir A, Proft M (2017) Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae. Mol Microbiol 104:851–868Mao K, Wang K, Zhao M, Xu T, Klionsky DJ (2011) Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 193:755–767Martinez-Montanes F, Pascual-Ahuir A, Proft M (2010) Toward a genomic view of the gene expression program regulated by osmostress in yeast. OMICS 14:619–627Martinez-Pastor M, Proft M, Pascual-Ahuir A (2010) Adaptive changes of the yeast mitochondrial proteome in response to salt stress. OMICS 14:541–552Mas G, de Nadal E, Dechant R, Rodriguez de la Concepcion ML, Logie C, Jimeno-Gonzalez S, Chavez S, Ammerer G, Posas F (2009) Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. EMBO J 28:326–336Mettetal JT, Muzzey D, Gomez-Uribe C, van Oudenaarden A (2008) The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319:482–484Molin C, Jauhiainen A, Warringer J, Nerman O, Sunnerhagen P (2009) mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress. RNA 15:600–614Nadal-Ribelles M, Conde N, Flores O, Gonzalez-Vallinas J, Eyras E, Orozco M, de Nadal E, Posas F (2012) Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling. Genome Biol 13:R106Pastor MM, Proft M, Pascual-Ahuir A (2009) Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast. J Biol Chem 284:30307–30317Petelenz-Kurdziel E, Kuehn C, Nordlander B, Klein D, Hong KK, Jacobson T, Dahl P, Schaber J, Nielsen J, Hohmann S, Klipp E (2013) Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLoS Comput Biol 9:e1003084Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9:1307–1317Proft M, Struhl K (2004) MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118:351–361Proft M, Pascual-Ahuir A, de Nadal E, Arino J, Serrano R, Posas F (2001) Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J 20:1123–1133Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23:241–250Ratnakumar S, Young ET (2010) Snf1 dependence of peroxisomal gene expression is mediated by Adr1. J Biol Chem 285:10703–10714Regot S, de Nadal E, Rodriguez-Navarro S, Gonzalez-Novo A, Perez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F (2013) The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress. J Biol Chem 288:17384–17398Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300Rep M, Proft M, Remize F, Tamas M, Serrano R, Thevelein JM, Hohmann S (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40:1067–1083Rienzo A, Poveda-Huertes D, Aydin S, Buchler NE, Pascual-Ahuir A, Proft M (2015) Different mechanisms confer gradual control and memory at nutrient- and stress-regulated genes in yeast. Mol Cell Biol 35:3669–3683Romero-Santacreu L, Moreno J, Perez-Ortin JE, Alepuz P (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15:1110–1120Roy A, Hashmi S, Li Z, Dement AD, Cho KH, Kim JH (2016) The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast. Mol Biol Cell 27:862–871Ruiz-Roig C, Noriega N, Duch A, Posas F, de Nadal E (2012) The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Mol Biol Cell 23:4286–4296Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–318Sekito T, Thornton J, Butow RA (2000) Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 11:2103–2115Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, Peinado JM, Corte-Real M (2005) Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol 58:824–834Sole C, Nadal-Ribelles M, de Nadal E, Posas F (2015) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 61:299–308Tamas MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G (2001) Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci USA 98:5625–5630Timon-Gomez A, Proft M, Pascual-Ahuir A (2013) Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS One 8:e79405Vanacloig-Pedros E, Bets-Plasencia C, Pascual-Ahuir A, Proft M (2015) Coordinated gene regulation in the initial phase of salt stress adaptation. J Biol Chem 290:10163–10175Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 21:3080–3092Wei CJ, Tanner RD, Malaney GW (1982) Effect of sodium chloride on bakers’ yeast growing in gelatin. Appl Environ Microbiol 43:757–763Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear MAPK function. Proc Natl Acad Sci USA 105:12212–12217Ye T, Garcia-Salcedo R, Ramos J, Hohmann S (2006) Gis4, a new component of the ion homeostasis system in the yeast Saccharomyces cerevisiae. Eukaryot Cell 5:1611–1621Yoshida A, Wei D, Nomura W, Izawa S, Inoue Y (2012) Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae. J Biol Chem 287:701–71

    A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon

    Get PDF
    BACKGROUND: Fish is considered protective for coronary heart disease (CHD), but mercury (Hg) intake from fish may counterbalance beneficial effects. Although neurotoxic effects of methylmercury (MeHg) are well established, cardiovascular effects are still debated. The objective of the present study was to evaluate blood pressure in relation to Hg exposure and fish consumption among a non-indigenous fish-eating population in the Brazilian Amazon. METHODS: The study was conducted among 251 persons from six communities along the Tapajós River, a major tributary of the Amazon. Data was obtained for socio-demographic information, fish consumption, height and weight to determine body mass index (BMI), systolic and diastolic blood pressure, and Hg concentration in hair samples. RESULTS: Results showed that overall, systolic and diastolic blood pressure, were relatively low (mean: 113.9 mmHg ± 14.6 and 73.7 mmHg ± 11.0). Blood pressure was significantly associated with hair total Hg (H-Hg), age, BMI and gender. No association was observed between fish consumption and blood pressure, although there were significant inter-community differences. Logistic regression analyses showed that the Odds Ratio (OR) for elevated systolic blood pressure (≥ 130 mmHg) with H-Hg ≥ 10 μg/g was 2.91 [1.26–7.28], taking into account age, BMI, smoking, gender and community. CONCLUSION: The findings of this preliminary study add further support for Hg cardiovascular toxicity

    Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serovars of the human pathogen <it>Chlamydia trachomatis </it>occupy one of three specific tissue niches. Genomic analyses indicate that the serovars have a phylogeny congruent with their pathobiology and have an average substitution rate of less than one nucleotide per kilobase. In contrast, the gene that determines serovar specificity, <it>ompA</it>, has a phylogenetic association that is not congruent with tissue tropism and has a degree of nucleotide variability much higher than other genomic loci. The <it>ompA </it>gene encodes the major surface-exposed antigenic determinant, and the observed nucleotide diversity at the <it>ompA </it>locus is thought to be due to recombination and host immune selection pressure. The possible contribution of a localized increase in mutation rate, however, has not been investigated.</p> <p>Results</p> <p>Nucleotide diversity and phylogenetic relationships of the five constant and four variable domains of the <it>ompA </it>gene, as well as several loci surrounding <it>ompA</it>, were examined for each serovar. The loci flanking the <it>ompA </it>gene demonstrated that nucleotide diversity increased monotonically as <it>ompA </it>is approached and that their gene trees are not congruent with either <it>ompA </it>or tissue tropism. The variable domains of the <it>ompA </it>gene had a very high level of non-synonymous change, which is expected as these regions encode the surface-exposed epitopes and are under positive selection. However, the synonymous changes are clustered in the variable regions compared to the constant domains; if hitchhiking were to account for the increase in synonymous changes, these substitutions should be more evenly distributed across the gene. Recombination also cannot entirely account for this increase as the phylogenetic relationships of the constant and variable domains are congruent with each other.</p> <p>Conclusions</p> <p>The high number of synonymous substitutions observed within the variable domains of <it>ompA </it>appears to be due to an increased mutation rate within this region of the genome, whereas the increase in nucleotide substitution rate and the lack of phylogenetic congruence in the regions flanking <it>ompA </it>are characteristic motifs of gene conversion. Together, the increased mutation rate in the <it>ompA </it>gene, in conjunction with gene conversion and positive selection, results in a high degree of variability that promotes host immune evasion.</p

    Spt2p Defines a New Transcription-Dependent Gross Chromosomal Rearrangement Pathway

    Get PDF
    Large numbers of gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. High mobility group 1 (HMG1) protein is a non-histone DNA-binding protein and is highly expressed in different types of tumors. The high expression of HMG1 could alter DNA structure resulting in GCRs. Spt2p is a non-histone DNA binding protein in Saccharomyces cerevisiae and shares homology with mammalian HMG1 protein. We found that Spt2p overexpression enhances GCRs dependent on proteins for transcription elongation and polyadenylation. Excess Spt2p increases the number of cells in S phase and the amount of single-stranded DNA (ssDNA) that might be susceptible to cause DNA damage and GCR. Consistently, RNase H expression, which reduces levels of ssDNA, decreased GCRs in cells expressing high level of Spt2p. Lastly, high transcription in the chromosome V, the location at which GCR is monitored, also enhanced GCR formation. We propose a new pathway for GCR where DNA intermediates formed during transcription can lead to genomic instability

    Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism

    Get PDF
    Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1[superscript CARD]) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar K[subscript i] on caspase-1[superscript CARD] polymerization in vitro and inflammasome activation in cells. Whereas caspase-1[superscript CARD] uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament

    Diversity in the Reproductive Modes of European Daphnia pulicaria Deviates from the Geographical Parthenogenesis

    Get PDF
    10 páginas, 5 figuras, 3 tablas.Background: Multiple transitions to obligate parthenogenesis have occurred in the Daphnia pulex complex in North America. These newly formed asexual lineages are differentially distributed being found predominantly at high latitudes. This conforms to the rule of geographical parthenogenesis postulating prevalence of asexuals at high latitudes and altitudes. While the reproductive mode of high-latitude populations is relatively well studied, little is known about the reproduction mode in high altitudes. This study aimed to assess the reproductive mode of Daphnia pulicaria, a species of the D. pulex complex, from high altitude lakes in Europe. Methodology/Principal Findings: Variation at eight microsatellite loci revealed that D. pulicaria from the High Tatra Mountains (HTM) had low genotype richness and showed excess of heterozygotes and significant deviations from Hardy- Weinberg expectations, and was thus congruent with reproduction by obligate parthenogenesis. By contrast, populations from the Pyrenees (Pyr) were generally in Hardy-Weinberg equilibrium and had higher genotypic richness, suggesting that they are cyclic parthenogens. Four lakes from lowland areas (LLaP) had populations with an uncertain or mixed breeding mode. All D. pulicaria had mtDNA ND5 haplotypes of the European D. pulicaria lineage. Pyr were distinct from LLaP and HTM at the ND5 gene. By contrast, HTM shared two haplotypes with LLaP and one with Pyr. Principal Coordinate Analysis of the microsatellite data revealed clear genetic differentiation into three groups. HTM isolates were intermediate to Pyr and LLaP, congruent with a hybrid origin. Conclusion/Significance: Inferred transitions to obligate parthenogenesis have occurred only in HTM, most likely as a result of hybridizations. In contrast to North American populations, these transitions do not appear to involve meiosis suppressor genes and have not been accompanied by polyploidy. The absence of obligate parthenogenesis in Pyr, an environment highly similar to the HTM, may be due to the lack of opportunities for hybridization.Peer reviewe
    corecore