14,402 research outputs found

    Triatomic continuum resonances for large negative scattering lengths

    Full text link
    We study triatomic systems in the regime of large negative scattering lengths which may be more favorable for the formation of condensed trimers in trapped ultracold monoatomic gases as the competition with the weakly bound dimers is absent. The manipulation of the scattering length can turn an excited weakly bound Efimov trimer into a continuum resonance. Its energy and width are described by universal scaling functions written in terms of the scattering length and the binding energy, B3B_3, of the shallowest triatomic molecule. For a1<0.0297mB3/2a^{-1}<-0.0297 \sqrt{m B_3/\hbar^2} the excited Efimov state turns into a continuum resonance.Comment: 4 pages, 4 figure

    Constraints on Mass Spectrum of Fourth Generation Fermions and Higgs Bosons

    Full text link
    We reanalyze constraints on the mass spectrum of the chiral fourth generation fermions and the Higgs bosons for the standard model (SM4) and the two Higgs doublet model (THDM). We find that the Higgs mass in the SM4 should be larger than roughly the fourth generation up-type quark mass, while the light CP even Higgs mass in the THDM can be smaller. Various mass spectra of the fourth generation fermions and the Higgs bosons are allowed. The phenomenology of the fourth generation models is still rich.Comment: 15 pages, 16 figures; some points clarified, references added, to appear in Phys.Rev.

    Charging Interacting Rotating Black Holes in Heterotic String Theory

    Full text link
    We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of General Relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low--energy string theory the double Ernst system can be particularly interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb--Ramond fields. We clarify the rotating character of the BtϕB_{t\phi}--component of the antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low--energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4D effective field theory of the heterotic string. This transformation generates the U(1)nU(1)^n vector field content of the whole low--energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio

    Production of Single Heavy Charged Leptons at a Linear Collider

    Get PDF
    A sequential fourth generation of quarks and leptons is allowed by precision electroweak constraints if the mass splitting between the heavy quarks is between 50 and 80 GeV. Although heavy quarks can be easily detected at the LHC, it is very difficult to detect a sequential heavy charged lepton, L, due to large backgrounds. Should the L mass be above 250 GeV, it can not be pair-produced at a 500 GeV ILC. We calculate the cross section for the one-loop process e+e- -> L tau. Although the cross section is small, it may be detectable. We also consider contributions from the two Higgs doublet model and the Randall-Sundrum model, in which case the cross section can be substantially higher.Comment: 14 pages, 7 figure

    Algebraic Model for scattering of three-s-cluster systems. II. Resonances in the three-cluster continuum of 6He and 6Be

    Get PDF
    The resonance states embedded in the three-cluster continuum of 6He and 6Be are obtained in the Algebraic Version of the Resonating Group Method. The model accounts for a correct treatment of the Pauli principle. It also provides the correct three-cluster continuum boundary conditions by using a Hyperspherical Harmonics basis. The model reproduces the observed resonances well and achieves good agreement with other models. A better understanding for the process of formation and decay of the resonance states in six-nucleon systems is obtained.Comment: 8 pages, 10 postscript figures, submitted to Phys. Rev.

    Local adsorption structure and bonding of porphine on Cu(111) before and after self-metalation

    Full text link
    We have experimentally determined the lateral registry and geometric structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P) adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction (PhD), and compared the experimental results to density functional theory (DFT) calculations that included van der Waals corrections within the Tkatchenko-Scheffler approach. Both 2H-P and Cu-P adsorb with their center above a surface bridge site. Consistency is obtained between the experimental and DFT-predicted structural models, with a characteristic change in the corrugation of the four N atoms of the molecule's macrocycle following metalation. Interestingly, comparison with previously published data for cobalt porphine adsorbed on the same surface evidences a distinct increase in the average height of the N atoms above the surface through the series 2H-P, Cu-P, cobalt porphine. Such an increase strikingly anti-correlates the DFT-predicted adsorption strength, with 2H-P having the smallest adsorption height despite the weakest calculated adsorption energy. In addition, our findings suggest that for these macrocyclic compounds, substrate-to-molecule charge transfer and adsorption strength may not be univocally correlated

    Hypermedia-based tutoring: methodology for the production of hypermedia resources through face-to-face tutoring

    Full text link
    We present a methodology for creating hypermedia materials derived from face-to-face tutoring sessions between a tutor and graduate students. To create the hypermedia materials, the tutor and the student used a smart pen which allowed to record the conversation and digitalize the notes being taken. The production of hypermedia material is based on the use of visual representations and text to help students go from concrete to abstract thinking and vice versa. We point out that hypermedia materials are audio-visual narratives (i.e., dynamic graphics, diagrams) that facilitate the representation of co-constructed shared knowledge and let participants navigate between oral and textual information. This methodology allows the production of individualized material without investing additional time in editing and designing. The hypermedia based tutoring (HBT) model is highly valued by students since it helps them to go over the discussions with the tutor and review the thinking process that both constructed during the session. HBT becomes a creative form of communicating and representing information that challenges the tutor and student to develop new skills and ways of thinking. The model that we propose here requires to change traditional tutor and student roles and to create learning experiences that do not overlook students’ needsThe eMadrid Excellence Network is funded by Madrid Regional Government (Comunidad de Madrid) grant no. P2013/ICE-2715. The FOMIX grant No. MOR-2013-C01-225102 is funded by Fondo Mixto-CONACYT (Morelos State Government and the Federal Agency CONACYT, Mexico

    CP violation and the 4th generation

    Get PDF
    Within the Standard model with the 4th generation quarks b' and t' we have analyzed CP-violating flavor changing neutral current processes t -> cX; b'-> sX, b'-> bX,t'-> cX, and t'-> tX, with X=Z,H,gamma,g, by constructing and employing global, unique fit for the 4th generation mass mixing matrix CKM4 at 300 < m_t' < 700 GeV. All quantities appearing in the CKM4 were subject to our fitting procedure. We have found that our fit produces the following CP partial rate asymmetry dominance: a_CP(b'-> s(Z,H,gamma,g))= (90,73,52,30)%, at m_t' ~ 300,300,380,400 GeV, respectively. From the experimental point of view the best decay mode, out of the above four, is certainly b'-> s gamma, because of the presence of a clean high energy single final state photon. We have also obtained relatively large a_CP(t -> c g) ~ 15 (10)% for t' running in the loops with the mass m_t'= 650(500) GeV. There are fair chances that the 4th generation quarks will be discovered at Tevatron or LHC and that some of their decay rates shall be measured. If b' and t' exist at energies we assumed, with well executed tagging, large a_CP could be found too.Comment: 19 pages, 12 figures, some of them new, references added, minor corrections in the text, version to appear in PR
    corecore