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1. Introduction  

The expansion of urban areas and their surroundings suburbs has been increased in the last 

decades. Many of these cities, particularly in the developing world, experience an 

uncontrolled growth and face unprecedented severe air quality problems, due to the high 

demand of energy, industrial activity and transportation (Molina et al., 2010). Policy makers 

have the challenge to plan and govern, having as one of their priorities the reduction of air 

pollution with the aim to protect the health’s population, providing at the same time 

infrastructure and services. 

Air quality models or source models are important tools in the environmental assessment 

since they estimate receptor concentrations from source emissions and meteorological 

measurements. One of the problems when dispersion models application is considered is 

that they use estimates of pollutant emissions rates and often rely on meteorological 

measurements from distant airports and emission rate estimates which stand little 

resemblance to those applicable to the area under study. As a result of this lack of data, 

dispersion models cannot be applied in many places or their results have large 

uncertainties. 

On the other hand, receptor models include a range of multivariate analysis methods that 
use ambient air measurements to infer the source types, locations, and contributions that 
affect ambient pollutant concentrations. Receptor models use the environmental 
concentration of the studied pollutants, as well as the composition of the chemical 
compounds emitted by the different sources to determine the source apportionment 
(Watson et. al., 2002a). These models are used also to evaluate the efficiency of specific 
control strategies associated with local programs to improve the air quality and also to 
estimate the emission inventory uncertainty, since they correlate the pollutants with their 
sources of emission. This article presents the importance to determine the main sources of 
PM2.5 through the use of receptor models. As a case study, the Principal Component 
Analysis (PCA), the UNMIX and the Chemical Mass Balance (CMB) models were applied 
for the source reconciliation of PM2.5 in the Metropolitan Area of Mexico City (MAMC). The 
results obtained by the three models are compared and discussed showing the advantages 
of the different models. 
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2. Airborne particles 

Suspended particles in the atmosphere can be originated from natural sources, such as 

wind-driven erosion dust, sea spray, and volcanoes, or from anthropogenic activities such 

as combustion of fuels (by vehicles, food cooking, wood burning or industries). Airborne 

PM is composed of inorganic salts, organic material, crustal elements and trace metals and 

possess a range of morphological, physical, chemical and thermodynamic properties. 

Airborne particles can change in the atmosphere in size and/or composition through 

condensation of vapor species or by evaporation, by coagulating with other particles, by 

chemical reaction, or by activation in the presence of supersaturated water vapor to 

become cloud and fog droplets (Raes et al., 2000). When particles are emitted directly they 

are known as primary aerosols, but if particles are formed in the atmosphere as a 

consequence of physical or chemical interactions among gases, particles and/or water 

vapor they are called secondary aerosols. Many organic secondary aerosols are formed in 

the atmosphere by incomplete combustion or by photochemical reactions. The most 

common inorganic secondary aerosols are the ammonium nitrate and sulfate originated 

by the reactions among dissolved sulfuric and nitric acids (formed also in the atmosphere 

by the reaction between water and sulfur oxides and nitrogen oxides respectively, with 

ammonia gas). 

An important characteristic of atmospheric particles is their size distribution, as it strongly 

affects particle behaviour, may determine their fate in atmospheric systems as well as their 

deposition in the human respiratory tract, and determines the equipment to be used for 

sampling. As atmospheric particles are not spherical and have a range of densities, the 

aerodynamic diameter (diameter of a spherical particle with an equal gravitational settling 

velocity but a material density diameter of 1 gcm-3) is used to define their size (Mugica & 

Ortiz, 2006). With this in mind, PM10, PM2.5 and PM1 refer to particles with aerodynamic 

diameter less or equal to 10 µm, 2.5 µm or 1 µm respectively. They are known also as 

respirable, fine and ultrafine particles, respectively. 

Crustal species from mineral dust, such as Si, Fe, Al, Ca, K, and Mg, are often present in 

large quantities in the coarse fraction of PM (particles with aerodynamic diameter larger 

than 2.5 μm but smaller than 10μm). Usually organic aerosols can account for 50% or more 

of the fine PM, and inorganic secondary aerosols are an important fraction of fine particles. 

2.1 Health adverse effects of PM 

It has been well established that exposure to PM can cause cardiovascular and respiratory 

problems, and inclusive increase the premature mortality. For that reason the improvement 

of human health is the priority objective of air quality programs (McKinley, 2003). Fine and 

ultrafine particles are poorly captured by the lung macrophages and are able to introduce 

into the epithelia and the interstitial tissue. Then, the possibility of natural cleaning of lungs 

is diminished, with an increasing of lung toxicity (Schwartz et. al., 1996). It was observed 

also, than mortality rate is higher in polluted cities, associating the pollution by fine particles 

with lung cancer (Dockery et. al., 1993; Maynard & Maynard, 2002), as well as with cardiac 

and respiratory illness (Samet el al., 2000).Pope et al. (2002) reported tan an increase of 10 

µgm-3 in the average concentrations of PM2.5 implicates the increase of lung cancer and 

cardiorespiratory risk diseases in 8 and 6% respectively.  
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The precise chemical and physical properties and toxicological mechanisms by which PM 

causes adverse health effects are still uncertain. Significant differences exist in the 

chemical composition and size distribution of PM based on the wide range of sources, 

meteorological conditions, atmospheric chemistry, diurnal and seasonal factors. PM 

aerodynamic size is a relevant element when studying PM toxicity due to its variable 

ability to penetrate the respiratory system; fine particles can reach the deep regions of the 

lungs, whereas coarse PM may be deposited early within the nasal-pharyngeal passages 

of the airways. Fine PM potentially may owe the type and intensity of the toxic response 

to organic compounds, metals and other reactive chemical compounds, since several of 

those species can promote oxidative stress through the generation of reactive oxygen 

species (ROS) (Tao et al, 2003; De Vizcaya et al., 2006). ROS can also damage cellular 

proteins, lipid, membranes, and DNA and PM exposure is also linked to inflammation 

through the generation of ROS, particularly those PM derived from combustion of fossil 

fuels (Nel, 2005). 

2.2 Adverse effects of PM in the environment  

Fine particles and some pollutant gases scatter and absorb light reducing the visibility and 

generating a haze that has negative effects on the visibility. Visibility can be defined as the 

maximum distance at which the outline of the farthest target can be recognized against a 

horizon background (Horvath, 1981). Although absorbing particles remove light 

transmitted from the target and make it appear darker, they do not scatter much light into 

the sight path, and they generally have a lower effect on contrast reduction than light-

scattering particles. The particles that are most efficient at scattering light are roughly the 

same size as the wavelength of visible light (about 0.5 μm) (Horvath, 1981).The correlation 

between fine and ultrafine particles with the decreasing of visibility has been measured in 

some studies showing that those PM are responsible of the light scattering. (Watson, 

2002b). 

Other effects of PM and pollutants have been found in materials, damage forests and crops, 

ecosystems, due to the abrasion, deposition, direct and indirect chemical attack and 

electrochemical corrosion (Davis & Cornwell, 1998). In addition, visible haze change the 

earth’s radiation balance 

3. Receptor models 

Receptor models infer contributions from different source types using multivariate 

measurements taken at one or more receptor locations. Receptor models use ambient 

concentrations and the abundances of chemical components in source emissions to quantify 

source contributions.  They are based on the same scientific principles as source models, but 

they are explanatory rather than predictive of source contributions. (Watson et al, 

2002a).While source models need spatial and temporal resolution and accurate emissions 

rates, receptor models need only a seasonal or annual average, area wide inventory to 

identify potential source categories. Contributions are quantified from chemically distinct 

source-types rather than from individual emitters. Sources with similar chemical and 

physical properties cannot be distinguished from each other (e.g., it is quite difficult to 

differentiate the diesel exhaust emissions of heavy, cars, trucks, stationary generators and 
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engines or off-road equipment, thus they can be grouped in one diesel exhaust category). 

Nevertheless, with appropriate chemical analysis of organic and inorganic compounds of 

detailed profiles, more chemical markers from sources could be detected and the separation 

in sub-categories become possible. 

Receptor models are based on the chemical mass balance equation and the main 

assumption is that composition of PM remains constant and chemical species do not react 

with each other. The source apportionment is accomplished by solving the mass balance 

equations expressing the measured ambient elemental concentrations as the sum of 

products between the source contributions and the elemental abundances in the source 

emissions, e.g. the source profiles. There are different receptor models which differ in the 

mathematical approaches that they have to solve the mass balance equations, as well as in 

the different degrees of knowledge about source profiles they need for source 

apportionment analysis. Receptor models are not statistics methods, and maybe the 

misunderstanding partially arises to the fact that much of the receptor modeling 

mathematics is also used to determine and test statistical associations in other scientific 

fields (Watson & Chow, 2004). 

Among the receptor models, Multiple Linear Regression have been widely used from 

more than three decades due to they have the advantage to be implemented by many 

statistical packages; identification of markers is required. The application of Enrichment 

factor is one of the first methods used to identify presence or absence of anthropogenic 

sources or processes responsible of the different atmospheric chemical species. Sometimes 

the reference geological material could be different to the sampling site. Multivariate 

models based in eigenvector analysis but using different normalization and rotation 

schemes have also been applied the last two decades; the most important are: Principal 

component analysis (PCA), Empirical orthogonal functions (EOF) and Factor Analysis 

(FA).The Positive Matrix Factorization (PMF) model was developed by Paatero & Tapper 

(1993) as a new approach to factor analysis, where the principal components explaining 

the variance of the speciated data are extracted and then interpreted as possible sources. 

The CMB model has been widely used to determine source contribution estimates for 

PM10 and PM2.5. This model calculates the source contributions by determining the best 

combination of source profiles needed to simulate the chemical composition of the 

ambient data. The model is able to estimate the source reconciliation for every day. Table 

1 shows most of the common receptor models used in air quality studies to develop 

pollution control strategies. 

Watson and Chow (2004) specify the following qualities which are desirable in any data 

base of source and receptor measurements: 1) a full range of chemical species in specified 

size fractions (for solid-phase pollutants); 2) specification of operating parameters (for 

source measurements), locations and sampling periods (for source and receptor 

measurements);3) documentation of sampling and analysis methods; 4) results of quality 

control activities and quality audits; 5) precision and accuracy estimates for each 

measurement; 6) data validation summaries and flags; and 7) availability in well-

documented computerized formats. 

Source and receptor models are complementary rather than competitive. Each has strengths 

and weaknesses that compensate for the other. Both types of models can and should be used 

in an air quality source assessment on outdoor and indoor air. 

www.intechopen.com



 
PM2.5 Source Apportionment Applying Material Balance and Receptor Models in the MAMC 

 

107 

Receptor Model Description 

Enrichment Factors 
(EF) 

The ratios of atmospheric concentrations of elements to a reference 
element are compared to the same ratios in geological or marine 
material. Differences are explained in terms of anthropogenic sources. 
It is more useful for identification of anthropogenic processes than for 
quantification.  

Multiple linear 
regression (MLR) 

Mass of chemical compounds is expressed as the linear sum of 
regression coefficients. The regression coefficients represent the inverse 
of the chemical abundance of the marker species in the source 
emissions. They can easy implemented in statistic packages, but limited 
to sources with marker species. The product of the regression 
coefficient and the marker concentration for a specific sample is the 
tracer solution to the mass balance that yields the source 
apportionment. Requires large data set. 

Eigenvector 
multivariate models: 
Principal component 

analysis(PCA), 
Empirical  orthogonal 

functions (EOF), Factor
Analysis (FA) 

Temporal correlations are calculated from a time series of chemical 
concentrations at one or more locations. These are eigenvector analysis 
multivariate models which can confirm and identify unrecognized 
source types. Eigenvectors of this correlation matrix are determined 
and a subset is rotated to maximize and minimize correlations of each 
factor with each measured species. The factors are interpreted as source 
profiles by comparison of factor loadings with source measurements. 
Source profiles from direct measurements are needed to interpret these 
eigenvectors. Easy implementation in statistic packages, but limited to 
sources with marker species. Requires large data set. 

UNMIX 
Form of Factor 

Analysis 

The UNMIX model “unmixes” the concentrations of chemical species 
measured in the ambient air to identify the contributing sources. 
Chemical profiles of the sources are not required, but instead are 
generated internally from the ambient data by UNMIX, using a 
mathematical formulation based on a form of factor analysis. UNMIX 
uses “edge detection” in a multidimensional space. The edges represent 
the samples that characterize the source. It can be run feasibly and 
easily on some statistical software. Requires large data set. 

Positive Matrix 
Factorization [PMF] 

The PMF technique is a form of factor analysis where the underlying 
co-variability of many variables is described by a smaller set of factors 
(PM sources) to which the original variables are related. The PMF 
assumption is that the concentration of specie in a site can be explained 
by the source matrix and contribution matrix. Both matrixes are 
obtained by an iterative minimization algorithm.  A restriction of no-
negativity ensures positive abundances and contributions. The main 
problem with PCA is that it does not provide a unique solution. 

ChemicalMass Balance 
(CMB) 

Ambient chemical concentrations are expressed as the sum of products 
of species abundances and source contributions and the equations are 
solved for the source contributions. Ambient concentrations and source 
profiles are supplied as input.The chemical characterization of the 
possible emission sources together with an estimation of the 
uncertainties for the species concentrations, are used as input for the 
CMB model. The main drawback of this model is that the accuracy of 
the source apportionment depends on the representativeness of the 
selected sources for the emission types in the area.  

 

Table 1. Most used Receptor Models in Air Quality Studies 
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4. Sampling and chemical analysis 

The Metropolitan Area of Mexico City (MAMC) is located in an elevated basin surrounded 
by mountains which do not favour the dispersion of air pollutants, especially during the 
cold season when frequent thermic inversions are present. The MAMC megacity has nearly 
20 million inhabitants, more than 4 million of vehicles and around 35,000 industries. A total 
of 132 aerosol samples were collected from January 2002 to December 2003, every six days, 
at the Azcapotzalco Campus of the Metropolitan University, located in an industrial-
residential area in the Northern. In addition, other three sites studied in previous campaigns 
(Chow et al, 2002) were sampled in March 2003 during ten days in order to determine the 
spatial variation. These sites were: 1) La Merced, located in the downtown with high 
commercial activity and high traffic activity; 2) Xalostoc, located at the Northeast is an 
industrial district surrounded for very important avenues with heavy traffic, and 3) 
Pedregal, is a residential neighborhood located at the Southwest. 
Samples were collected onto Teflon and quartz 47 mm filters using PM10 and PM2.5 

Minivol samplers (Airmetrics, Eugene, OR). Teflon-membrane filters (Gelman Scientific, 
Ann Arbor, MI) with 2 mm pore size collected samples for mass and subsequent 
elemental analysis, whereas  precalcinated Quartz fiber filters (Pallflex, Products 
Corp.,Putnam, CT) collected samples for water-soluble anions (Cl-, NO3-, SO42-) and 
cations (Na+, K+, NH4+), organic carbon and elemental carbon analyses. Filters were 
equilibrated for two weeks in a relative humidity (25–35%) and temperature (20±0.5°C) 
controlled environment before gravimetric analysis to minimize particle volatilization. 
Filters were weighed before and after sampling with a Mettler Toledo (MT-5) 
microbalance. The balance sensitivity is 0.001 mg. Subsequently, the filters were stored in 
a freezer until aerosol sampling and chemical analyses. Quartz filters were split into two 
using plastic scissors: the first part was for ion analysis and the second one for the 
quantification of organic and elemental carbon. 
Soluble ions were extracted ultrasonically (Branson bath, USA) with Milli-Q deionized 
water during 20 min. Sulfate (SO42-), water-soluble ammonium (NH4+), nitrate (NO3-), water-
soluble sodium (Na+), and potassium (K+), were quantified by ion chromatography, with a 
Perkin Elmer-Alltech 550 instrument fitted with a conductivity detector), using specific 
anion and cation Alltech columns. Organic and elemental carbon was determined by an 
automated thermal-optical transmittance (TOT) carbon analyzer, Sunset Lab, USA, using 
method 5040 (NIOSH protocol) (Birch and Cary, 1996).  
Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-AES, from Atom 
Advantage Thermo Jarrel Ash, was used to analyze the elemental components of the PM 
collected on the teflon filters. Filters were digested in a microwave oven (OI-Analytical, 
USA) using high-pressure Teflon digestion vessels with 2 ml of HF, 1 ml HCl and 2 ml 
HNO3 (67%). The average filter blank value was used as a background subtraction for each 
sampled filter. 20 mg extractions of a well-characterized urban dust (SRM 1649a standard 
reference material NIST), field samples and filter blanks were handled and analyzed under 
the same procedure as filters with air samples. Quality audits of the sample flow rates were 
conducted each week of the study period. Data were submitted to three levels of data 
validation (Watson et al., 2002a.), so intercomparison and performance tests were carried 
out between CICATA-Altamira and UAM-Azcapotzalco. For the purposes of calculating 
weight fractions, elements were normalized for oxygenated species as described by Mc 
Donald (2000). 
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5. Mass of PM2.5 

Table 2 shows the basic statistic of the total mass of PM2.5 in the four sampling sites. 

Traditionally (GDF, 2008), Xalostoc is the most polluted site due to the high industrial and 

vehicular activities. Winds use to blow from Northeast to Southwest, and although Pedregal 

is the less polluted place by PM, usually exceed the ozone standard.  

 

Site N Mean Max Min 

Azcapotzalco (N) 
132 

Two whole years 
2002-2003 

56.9±13.9 93.1 34.5 

Merced (Center) 
10 

March 2003 
58.1±19.3 74.2 39.6 

Pedregal (Southwest) 
10 

March 2003 
26.8±11.7 47.2 21.6 

Xalostoc (Northeast) 
10 

March 2003 
69.2±23.4 105.7 47.2 

Table 2. Levels of PM2.5 in the MAMC 

For CMB model application is necessary to select fitting species, as well as the adequate 

sources profiles, thus, in this study the strategy was to use the Factor Analysis Models 

(PCA) and UNMIX to identify the main emission sources and marker elements, and 

subsequently apply the CMB model with speciated source profiles for a more robust source 

apportionment. 

6. Factor analysis: principal component analysis 

PCA model belongs to the category of factor analysis (FA) techniques, i.e. it is a multivariate 

method used to study the correlations among the measured elemental concentrations at the 

receptor. With this method, the principal components explaining the variance of the 

chemical species data, and then they interpreted as possible sources. Assuming a linear 

relationship between the total mass concentration and the contributions of each specie, PCA 

factors the data in several steps. First, the chemical composition data are transformed into a 

dimensionless standardized form 

 
−

=
Cij Cj

Zij
jσ

 (1) 

where i=1, …, n samples; j=1, …, m elements; Cij is the concentration of element j in sample 

i; and Cj and σj are the arithmetic mean concentration and the standard deviation for 

element j, respectively. The PCA model is expressed as:       

 
1=

= ∑
p

k

Zij gik hkj  (2) 

where k=1,p sources, and gik and hkj are the factor loadings and the factor scores, 
respectively. This equation is solved by eigenvector decomposition. Varimax rotation is 
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often used to redistribute the variance and provide a more interpretable structure to the 
factors. PCA not provide a unique solution mainly because of its simple approach to factor 
analysis. Despite this drawback, known as rotational ambiguity, PCA has been applied as a 
tool for source apportionment in many air quality studies (Karar and Gupta, 2007). 
With the chemical data obtained from the chemical analysis of samples, a data base was 
prepared for the PCA. The ambient data were normalized with media=0 and standard 
deviation = 1, to reduce the excessive influence of the species with mass. The statistic 
software SPSS v.12 for windows was used to obtain the number of factors, the mass matrix 
and the Varimax Rotation. The selection of chemical species was performed to get the better 
fittings. Maatlab 6.5 package was used to execute the matrix operations. Matlab estimated 
the not scaled contributions for further lineal regression to convert them in mass unities. 
Finally the mass balance matrix was cleared to determine the profiles. Model performance 
was evaluated with the mass percentage and the linear regression coefficient R2. 
PCA resulted to be very useful to determine the potentially contribution of source types, 
including those with small data set (as was de case of Merced, Pedregal and Xalostoc with 
only ten samples). The fitting species were: sulfate, ammonium, organic carbon, elemental 
carbon, aluminum, silicon, sulfur, calcium, and iron. Table 3 shows the factor loadings 
normalized with the VARIMAX rotation, which maximizes the variances of the squared 
normalized factor loadings across variables for each factor, thus making the interpretation 
easier. The final solution of PCA reported three values higher than 1, suggesting three main 
factors (sources) in the four sites: Vehicular, soil and secondary aerosols. These three sources 
accumulated more than the 90% of the system variance.  
The markers related to the first factor associated with “soil” that explained 34% of variance 
were Al, Si, Ca, and Fe, which are crustal elements. The markers associated to the second 
factor “secondary aerosols” are SO42- and NH4+ related with ammonium sulfate, a secondary 
aerosol which can be formed in the atmosphere. The third factor “vehicular”, is mainly 
represented by organic and elemental carbon.  
 

 Rotated Component Matrix* 
 Component   
 Soil Sec Aerosols Vehicle 
SO4 0.005 0.994 0.042 
NH4 -0.123 0.963 0.190 
OC 0.412 0.197 0.830 
EC -0.004 0.067 0.964 
AL 0.982 -0.094 0.065 
SI 0.988 -0.048 0.101 
SU 0.000 0.990 0.055 
CA 0.984 0.008 0.089 
FE 0.964 -0.012 0.173 
% Total Variance 34.210 28.541 27.453 
% AccumulatedVariance 34.210 62.750 90.204 
Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax with Kaiser Normalization. 
* Rotation converged in 4 iterations. 

Table 3. PCA final solution in Azcapotzalco site 
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Figure 1 shows graphically the apportionment of PM2.5 considering the three sources 
mentioned above, obtained with PCA for the different sites. In all cases the most important 
contributor to PM2.5 was the mobile sources with more than 45% of the total mass, followed 
by secondary aerosols. Pedregal had the lowest contribution of soil. It is important to 
highlight that the results from Merced, Pedregal and Xalostoc represent only the 
apportionment of PM measured in March 2003 that is part of the warm dry season in the 
MAMC, whereas the measurements in Azcapotzalco were carried out during two years, so 
these results are the average of measurements done in the dry and rainy seasons.   
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Fig. 1. Source apportionment results from PCA at the four sites 

7. UNMIX model 

The UNMIX model is a refined multivariate receptor model that uses a new transformation 
method based on the self-modeling curve resolution technique toderive meaningful factors. 
UNMIX incorporates user-specified non-negativity constraints and edge-finding algorithms 
to derive a physically reasonable apportionment of source contributions (Henry, 2001; Poirot 
et al., 2001). The edges are constant ratios among chemical components that are detected in 
multi-dimensional space. The edges detected by this model are translated into source profile 
abundances.This model does not require a previous knowledge about emission sources, 
although it is necessary a big number of measurements to estimate the different factors, as 
well as the magnitude of their contributions (Chen et al., 2002; Hellén et al. 2003). UNMIX 
try to solve the problem of the chemical species mixture with the assumption that the data of 
each sample has a lineal combination of an unknown number of sources which contributes 
with an unknown mass concentration to the total mass. Another assumption is that all 
values are positive (> 0). 
UNMIX uses the singular value decomposition (SVD) method to estimate the source 
number by reducing the dimensionality of data space m to p (Henry, 2001). The UNMIX 
model can be expressed as 

 
1 1

 
= =

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑ ∑
p p

i k

Cij Uik Dkl Vlj ijε  (3) 
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Where U, D, and V are n×p, p×pdiagonal, and p×mmatrices, respectively; and εij is the error 
term consisting of all the variability in Cij not accounted for by the first p principal 
components.  
Geometrical concepts of self-modeling curve resolution are used to ensure that the results 
obey (to within error) the nonnegative constraints on source compositions and 
contributions.The data are then projected to a plane perpendicular to the first axis of p-
dimensional space. The edges represent the samples that characterize the source. Such edges 
in point sets are then used to calculate the vertices, which are used with the matrices 
decomposed by SVD to obtain the source profiles and contributions. The stand-alone EPA 
UNMIX version 5.0 was used in this study. For a given selection of species, UNMIX 
estimates the number of sources, the source compositions, and source contributions to each 
sample. 
UNMIX has been applied to several studies for source apportionment of particulate matter 
(Chen et al., 2002; Song et al. 2006). One of the first applications was performed by Lewis et 
al. (2003) in a three years data set in Phoenix, Arizona. The model estimated the source 
profiles for five source categories (gasoline-vehicles, diesel-vehicles, secondary sulfates, soil 
and wood burning), and the results were consistent with other study that applied the PMF 
model. Maykut et al. (2003) compared CMB, PMF and UNMIX in Seattle to determine the 
PM2.5 sources with the coincidence of three sources: wood burning, mobile sources and 
secondary aerosols. Larsen y Baker (2003) applied UNMIX and PMF models to determine 
the origin of polycyclic aromatic hydrocarbons in Baltimore. 
When UNMIX model was applied to the MAMC samples, the same three sources obtained 
in the PCA were clearly identified. Table 4 shows the output of the model for Azcapotzalco 
site, where not only the total mass contributions are displayed, but also the contribution of 
the most abundant species to the total mass of PM2.5. 
 

 

Table 4. Output of UNMIX model for Azcapotzalco site. 

Figure 2 shows the contribution of the three mentioned sources to the total mass of PM2.5 at 
the three sites. It is possible to appreciate some difference of the apportionment yield by 
PCA. UNMIX apportioned a higher quantity due to mobile sources than PCA. 
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Fig. 2. Source apportionment results from UNMIX at the four sites 

8. Chemical Mass Balance receptor model (CMB) 

The CMB model is similar to a tracer model, in which a specific compound, that is 
associated with a particular type of source, is used to identify and quantify the contributions 
of each source. The model uses the complete model of chemical emissions of a category of 
specific source to determine its contribution. For the application of the CMB model is 
necessary to have the databases of the ambient and the source emission profiles. The first 
one is obtained by collecting samples of ambient air at different locations with the purpose 
of obtaining information of the population that is investigated. When taking the samples it is 
expected that they are representative and reflect the properties of the site. On the other 
hand, source profiles are obtained directly inside the source or as near as possible. The 
quality of the data will depend on the number of taken samples, used devices, the place and 
time of the sampling. Equation 4 is the fundamental base of the receptor model, this 
expresses the relationship between the concentrations of the chemical species measured in 
the receptor with those emitted in the source.  

 
1=

= ⋅∑
p

j

Ci Fij Sj  (4) 

Where 
Ci = Ambient concentration of the species “i” measured in the receptor site  
p = Number of sources that contribute j = 1, 2,...j 
Fij = Fraction of the emissions of the species “i” starting from the source “j”  
Sj = Impact to the receptor (calculated contribution) of the source “j”  
These equations are solved for the source contributions. Several different solution methods 
have been applied, but the effective variance least squares estimation method is most 
commonly used because it incorporates precision estimates for all of the input data into the 
solution and propagates these errors to the model outputs 
The CMB model provided values for several performance measures to evaluate the solution. 
These measured values included chi-square, the weighted sum of the squared differences 
between calculated and measured fitting species concentrations divided by the effective 
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variance and degrees of freedom (ideally chi-square would be zero, but values up to 4 are 
acceptable). R2 is the fraction of the variance in the receptor concentrations. R2 ranges from 0 
to 1, when R2 is less than 0.8 the source contribution estimated did not explain the 
observations clearly with the fitting source profiles. The calculated mass should be in the 
range of 100 ± 20 (Watson et al., 1991). 
The chemical mass balance model, CMB, which is based upon regression analysis of PM 
chemical composition, is the fundamental receptor model to find the most appropriate 
combination of source apportionment. This model has been used in other countries (Chow 
and Watson, 2002) with the aim to establish control measurements for the main PM 
contributors.  
In this study, each of the daily ambient concentrations of PM2.5 and elemental components 
were submitted as input to the CMB model (Henry, 1997). The source profiles for fugitive 
dust (Vega et al., 2001), food cooking (Mugica et al., 2001) and combustion source profiles 
developed for Mexico City (Mugica et al., 2008) were used also as input. The most common 
inorganic components were included as fitting species in the CMB model as well as organic 
and elemental carbon (OC and EC). In order to account for secondary aerosol contributions 
to PM2.5, ammonium sulfate, and ammonium nitrate profiles were introduced in the 
analysis. Each result was evaluated by using the regression statistical parameters available 
for each CMB output. 
CMB model could identify six different sources: soil, gasoline vehicles exhaust, diesel 
vehicles exhaust, food cooking, ammonium sulfate and ammonium nitrate. This means that 
CMB could separate two different types of vehicles (e.g. those which use gasoline and those 
that use diesel), as well as the two types of inorganic secondary aerosols. Table 5 displays 
the average of the statistical parameters of the model in the PM2.5 source reconciliation in the 
four sites. In general, the parameters of R2, Chi2 and percentage of mass were in the 
acceptable interval. The values of R2 fluctuated between 0.92 and 0.96. Likewise, the values 
of Chi2 were smaller than 4. The percentages of mass calculated when applying the model 
varied from 88.1 to 104.5, with an average of 93.5%. 
 

Site R2 CHi2 %Mass 
Meas. Conc. 

[µgm-3] 

Calc. Conc. 

[µgm-3] 

Azcapotzalco 0.95 0.95 95.7 56.92 54.17 
Merced 0.96 2.34 94.3 51.25 48.04 
Pedregal 0.96 3.49 94.6 26.32 25.74 
Xalostoc 0.97 2.86 91.6 68.32 70.74 

Table 5. Average statistical parameters of the CMB model applied to PM2.5 

The estimated contributions in µgm-3 by CMB model vary considerably from one day to 
another in every site, although in all the cases the major emission sources were the vehicles 
(sum of diesel plus gasoline exhaust) with contributions between 50 and 66%, followed by 
aerosols (ammonium sulfate plus ammonium nitrate) and soil (Figure 3). 
Figure 4 shows the source contribution of the six sources separated by CMB model in some 
selected samples of the Azcapotzalco site. In this graphic the separation between gasoline 
exhaust (with around 28% of the total of PM2.5) and diesel exhaust (with 26%) is visible. The 
new source due to food cooking was also identified with contributions up to 10%, and it was 
possible to detect that ammonium sulfate concentration is more than four times  greater 
than ammonium nitrate.  
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Fig. 3. Source apportionment from CMB at the four sites. 
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Fig. 4. Source apportionment of PM2.5 (µgm-3) in Azcapotzalco 

Mann-Whitney U test was used to determine differences among the results obtained for the 

three models. The findings showed that the contributions of soil, vehicles and secondary 

aerosols estimated by the three models are statistically equivalent, with (p > 0.05). CMB 

fully apportions receptor concentrations to chemically distinct source-types depending upon 

the source profile database, while UNMIX and PMF internally generate source profiles from 

the ambient data. 

9. Conclusion 

In this paper, the principles of different receptor models were revised and the performances 

of CMB, PMF and PCA were evaluated in their application to PM2.5 samples from different 

sites of the MAMC. The use of several types of models helps to identify and quantify model 
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inaccuracies and focus further investigation on the areas of greatest uncertainty. PCA and 

UNMIX apportioned one single source of mobile sources, but the CMB model was able to 

distinguish between the two main sources of mobile sources (gasoline and diesel exhaust) in 

the four sites. In addition CMB could separate the two different types of secondary aerosols. 

Thus, in this study was demonstrated the capability of CMB model to better apportion on 

PM mass. Nevertheless the use of PCA and UNMIX was fundamental to identify the main 

sources as well as the marker elements which were further used during the CMB application 

as fitting species.  The use of three models improve the source reconciliation and allows a 

better knowledge of the suspended PM2.5 in the MAMC. 

10. Acknowledgements 

The authors wish to express their thanks for the chemical analysis to the Applied Chemistry 
laboratories at the Metropolitan University-Azcapotzalco, and CICATA/IPN. V. Mugica 
and J. Aguilar gratefully acknowledge the SNI for the distinction of her membership and the 
stipend received. 

11. References 

Chen, L.W.A., Doddridge, B.G.; Dickerson, R.R.; Chow, J.C.; Henry, R.C. 2002. Origins of 
Fine Aerosol Mass in the Baltimore–Washington Corridor: Implications From 
Observation, Factor Analysis, and Ensemble Air Parcel Back Trajectories; Atmos. 
Environ. 36, 4541-4554. 

Chow, J.C., Watson, J.G., 2002. Review of PM2.5 and PM10 apportionment for fossil fuel 
combustion and other sources by the chemical mass balance receptor model. 
Energy& Fuels 16, 222–260. 

Davis ML, Cornwell DA. 1998. Introduction to environmental engineering. McGrawHill, 
Singapore. e in atmospheric aerosols. Atmos. Environment. 38: 1387-1388. 

De Vizcaya-Ruiz A., Gutiérrez-Castillo M.E., Uribe-Ramirez M., Cebrián M.E., Mugica-
Alvarez V., Sepúlveda J., Rosas I., Salinas E., Garcia-Cuéllar C.M., Martínez F., 
Alfaro-Moreno E., Torres-Flores V., Osornio-Vargas A., Sioutas C., Fine P.M., Singh 
M., Geller M.D., Kuhn T., Eiguren-Fernandez A., Miguel A., Schiestl R., Reliene R., 
Froines J. 2006. Characterization and in vitro biological effects of Concentrated 
particulate matter from Mexico City. Atmospheric Environment. 40, 2: 583-592. 

Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME, Ferris Jr BG, Speizer FE. 
1993. An association between air pollution and mortality in six US cities. The New 
England Journal of Medice 329: 1753-1759. 

Hellén H, Hakola H, Laurila T. 2003. Determination of source contribution of NMHC in 
Helsinki (60ºN, 25ºE) using chemical mass balance and the UNMIX Multivariate 
receptor models. Atmospheric Environment. 37: 1413-1424. 

Henry, R.C., Willis, R.D., 1997. Chemical mass balance receptor model version 8 (CMB8) 
user´s manual. Prepared for US Environmental Protection Agency, Research 
Triangle Park, NC, by Desert Research Institute, Reno, NV. 

Henry, R. C. UNMIX Version 2.4 Manual; U.S. Environmental Protection Agency: Research 
Triangle Park, NC. 2001. 

Karar, K., Gupta, A.K., 2007. Source apportionment of PM10 at residential and industrial 
sites of an urban region of Kolkata, India. Atmospheric Research 84, 30–41. 

www.intechopen.com



 
PM2.5 Source Apportionment Applying Material Balance and Receptor Models in the MAMC 

 

117 

Larsen RK III, Baker JE. 2003. Source apportionment of polycyclic aromatic hydrocarbons in 
the urban atmosphere: a comparison of three methods. Environ. Sci. Technol. 37: 
1873-1881. 

Maynard AD, Maynard RL. 2002. A derived association between ambient aerosol surface 
area and excess mortality using historic time series data. Atmospheric Environment 
36: 5561-5567. 

McKinley G., Zuk M, Hojer M, Avalos M, González I, Hernández M, Iniestra R, Laguna I, 
Martínez MA, Osnaya P, Reynales LM, Valdés R, Martínez J. 2003. The Local 
Benefits of Global Air Pollution Control in Mexico City: Final Report of the Second 
Phase of the IntegratedEnvironmentalStrategies Program in Mexico. 
IntitutoNacional de Ecología – InstitutoNacional de SaludPública, México. 

Maykut NN, Lentas J, Kim E, Larson TV. 2003. Source apportionment of PM2.5 at an urban 
IMPROVE site in Seattle, Washington. Environ. Sci. Technol. 37: 5135-5142. 

Mc Donald J., Zielinska B., Fujita E., Sagebiel J., Chow J. and Watson J. (2000). Fine particle 
and gaseous emission rates from residential wood combustion. Environ. Sci. 
Technol. 34, 2080-2091. 

Mugica V., Vega E., Chow J., Reyes E., Sanchez G., Arriaga J., Egami R., Watson J. 2001. 
Speciated non-methane organic compounds emissions from food cooking in 
Mexico. Atmospheric Environment 35, 1729-1734.  

Mugica V. & Ortiz E. 2005. Elemental composition of airborneparticles Analytical techniques 
and application in decision-making for air quality management in Applications of 
Analytical Chemistry in Environmental Research, 219-261. ISBN: 81-308-0057-8 M. 
Palomar (Ed).  Research Signpost. 37/661 (2). India.  

Mugica V., Mugica F., Torres M., Figueroa J. 2008. PM2.5  Emission Elemental Composition in 
the Metropolitan Area of Mexico City. From diverse Combustion Sources in the 
Metropolitan Area of Mexico City. The Scientific World.8: 275-286.  

Nel A. 2005. Atmosphere. Air pollution-relatedillness: effects of particles. Science. 308 
(5723): 804-6. 

Paatero, P.&Tapper, U., 1993. Analysis of different modes of factor analysisas least squares 
fit problems. Chemometrics and Intelligent LaboratorySystems 18, 183–194. 

Poirot, R.L.; Wishinski, P.R.; Hopke, P.K.; Polissar, A.V. 2001. Comparative Application of 
Multiple ReceptorMethods to IdentifyAerosol Sources in Northern Vermont; 
Environ. Sci. Technol. 35, 4622-4636. 

Pope III C.A., Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., Thurston G.D. 2002 
Lung cancer, cardiopulmonarymortality, and long-termexposure to fine particulate 
air pollution. JAMA. 287: 1132-41. 

Raes F., Van Dingenen R, Vignati E., Wilson J, Putaud JP, Seinfeld JH, Adams P. 2000. 
Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 34: 
4215-4240. 

Song Y., Xie S., Zhang Y., Zeng L. Salmon L., Zheng M. 2006. Source apportionment of PM2.5 
in Beijing using principal component analysis/absolute principal component scores 
and UNMIX.The Science of the Total Environment. 15: 372(1):278-86. 

Samet JM, Dominici F, Curriero FC, Coursac I, Séller SL. 2000. Fine particle air pollution and 
mortality in 20 US cities, 1987-1994. The New England Journal of Medicine 343: 
1742-1749. 

www.intechopen.com



  
Monitoring, Control and Effects of Air Pollution 

 

118 

Schwartz J, Dockery DW, Neas LM. 1996. Is daily mortality associated specifically with fine 
particles? J. Air & Waste Manage. Assoc. 46: 927-939. 

Tao F, Gonzalez-Flecha B, Kobzik L. 2003. Reactiveoxygenspecies in pulmonary 
inflammation by ambient particulates. Free Radic.Biol. Med. 35:327-40. 

Vega E., Mugica V., Reyes E., Sánchez G., Chow J., Watson J. 2001.Chemical Composition of 
Fugitive Dust Emitters in Mexico City. Atmos. Environ., 35, 23, pp 4033-4039. 

Watson, J., Chow, J., Pace, T., 1991. Chemical mass balance. In: Hopke, P.K. 
(Ed.),ReceptorModeling for Air Quality Management. Elsevier Press, New York, 
NY,pp. 83–116. 

Watson JG, Zhu T, Chow JC, Engelbrecht J, Fujita EM, Wilson WE. 2002a. Receptor  
modeling application framework for particle source apportionment. Chemosphere. 
49:1093-1136. 

Watson J. 2002b. Visibility: Science and regulation. J. Air Waste Manag Assoc. 52 : 628-713. 
Watson J. & Chow J. 2004. Receptor Models for Air Quality Management.EM. October:15-24. 

www.intechopen.com



Monitoring, Control and Effects of Air Pollution

Edited by Prof. Andrzej G. Chmielewski

ISBN 978-953-307-526-6

Hard cover, 254 pages

Publisher InTech

Published online 23, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book addresses the subjects related to the selected aspects of pollutants emission, monitoring and their

effects. The most of recent publications concentrated on the review of the pollutants emissions from industry,

especially power sector. In this one emissions from opencast mining and transport are addressed as well.

Beside of SOx and NOx emissions, small particles and other pollutants (e.g. VOC, ammonia) have adverse

effect on environment and human being. The natural emissions (e.g. from volcanoes) has contribution to the

pollutants concentration and atmospheric chemistry governs speciation of pollutants, as in the case of

secondary acidification. The methods of ambient air pollution monitoring based on modern instrumentation

allow the verification of dispersion models and balancing of mass emissions. The comfort of everyday

humanâ€™s activity is influenced by indoor and public transport vehicles interior air contamination, which is

effected even by the professional appliances operation. The outdoor pollution leads to cultural heritage objects

deterioration, the mechanism are studied and the methods of rehabilitation developed. However to prevent

emissions the new technologies are being developed, the new class of these technologies are plasma

processes, which are briefly reviewed at the final part of the book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

V. Mugica, R. Vallesa, J. Aguilar, J. Figueroa and F. Mugica (2011). PM2.5 Source Apportionment Applying

Material Balance and Receptor Models in the MAMC, Monitoring, Control and Effects of Air Pollution, Prof.

Andrzej G. Chmielewski (Ed.), ISBN: 978-953-307-526-6, InTech, Available from:

http://www.intechopen.com/books/monitoring-control-and-effects-of-air-pollution/pm2-5-source-apportionment-

applying-material-balance-and-receptor-models-in-the-mamc



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


