15,137 research outputs found

    FCNCs in supersymmetric multi-Higgs doublet models

    Full text link
    We conduct a general discussion of supersymmetric models with three families in the Higgs sector. We analyse the scalar potential, and investigate the minima conditions, deriving the mass matrices for the scalar, pseudoscalar and charged states. Depending on the Yukawa couplings and the Higgs spectrum, the model might allow the occurrence of potentially dangerous flavour changing neutral currents at the tree-level. We compute model-independent contributions for several observables, and as an example we apply this general analysis to a specific model of quark-Higgs interactions, discussing how compatibility with current experimental data constrains the Higgs sector.Comment: 30 pages, 9 figures. Comments and references added. Final version published in Physical Review

    Influences of thermal environment on fish growth

    Get PDF
    Indexación: Scopus.Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (ΔT 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.http://onlinelibrary.wiley.com/doi/10.1002/ece3.3239/ful

    Novel sum rules for the three-point sector of QCD

    Full text link
    For special kinematic configurations involving a single momentum scale, certain standard relations, originating from the Slavnov-Taylor identities of the theory, may be interpreted as ordinary differential equations for the ``kinetic term'' of the gluon propagator. The exact solutions of these equations exhibit poles at the origin, which are incompatible with the physical answer, known to diverge only logarithmically; their elimination hinges on the validity of two integral conditions that we denominate ``asymmetric'' and ``symmetric'' sum rules, depending on the kinematics employed in their derivation. The corresponding integrands contain components of the three-gluon vertex and the ghost-gluon kernel, whose dynamics are constrained when the sum rules are imposed. For the numerical treatment we single out the asymmetric sum rule, given that its support stems predominantly from low and intermediate energy regimes of the defining integral, which are physically more interesting. Adopting a combined approach based on Schwinger-Dyson equations and lattice simulations, we demonstrate how the sum rule clearly favors the suppression of an effective form factor entering in the definition of its kernel. The results of the present work offer an additional vantage point into the rich and complex structure of the three-point sector of QCD.Comment: 34 pages, 7 figures, 1 tabl

    Gluon dynamics from an ordinary differential equation

    Full text link
    We present a novel method for computing the nonperturbative kinetic term of the gluon propagator from an exactly solvable ordinary differential equation, whose origin is the fundamental Slavnov-Taylor identity satisfied by the three-gluon vertex, evaluated in a special kinematic limit. The main ingredients comprising the solution are a well-known projection of the three-gluon vertex, simulated on the lattice, and a particular derivative of the ghost-gluon kernel, whose approximate form is derived from a standard Schwinger-Dyson equation. Crucially, the physical requirement of a pole-free answer determines completely the form of the initial condition, whose value is calculated from a specific integral containing the same ingredients as the solution itself. This outstanding feature fixes uniquely, at least in principle, the form of the kinetic term, once the ingredients of the differential equation have been accurately evaluated. Furthermore, in the case where the gluon propagator has been independently accessed from the lattice, this property leads to the unambiguous extraction of the momentum-dependent effective gluon mass. The practical implementation of this method is carried out in detail, and the required approximations and theoretical assumptions are duly highlighted. The systematic improvement of this approach through the detailed computation of one of its pivotal components is briefly outlined.Comment: 35 pages, 12 figures, 2 table

    Nonperturbative Ball-Chiu construction of the three-gluon vertex

    Get PDF
    We present the detailed derivation of the longitudinal part of the three-gluon vertex from the Slavnov-Taylor identities that it satisfies, by means of a nonperturbative implementation of the Ball-Chiu construction; the latter, in its original form, involves the inverse gluon propagator, the ghost dressing function, and certain form factors of the ghost-gluon kernel. The main conceptual subtlety that renders this endeavor nontrivial is the infrared finiteness of the gluon propagator, and the resulting need to separate the vertex into two pieces, one that is intimately connected with the emergence of a gluonic mass scale, and one that satisfies the original set of Slavnov-Taylor identities, but with the inverse gluon propagator replaced by its "kinetic" term. The longitudinal form factors obtained by this construction are presented for arbitrary Euclidean momenta, as well as special kinematic configurations, parametrized by a single momentum. A particularly preeminent feature of the components comprising the tree-level vertex is their considerable suppression for momenta below 1 GeV, and the appearance of the characteristic "zero-crossing" in the vicinity of 100-200 MeV. Special combinations of the form factors derived with this method are compared with the results of recent large-volume lattice simulations as well as Schwinger-Dyson equations, and good overall agreement is found. A variety of issues related to the distribution of the pole terms responsible for the gluon mass generation are discussed in detail, and their impact on the structure of the transverse parts is elucidated. In addition, a brief account of several theoretical and phenomenological possibilities involving these newly acquired results is presented.Comment: 55 pages, 18 figure
    • …
    corecore