21,761 research outputs found

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Green fluorescent protein as an indicator of cryoinjury in tissues.

    Get PDF
    The fluorescence intensity of Green Fluorescent Protein (GFP) has previously been demonstrated to be an accurate indicator of cellular viability following cryoinsult in individual GFP-transfected cells. In an attempt to ascertain whether GFP fluorescence intensity may also be used as a viability indicator following cryogenic insults in whole tissues, this study examines the transient fluorescence intensity of GFP-transfected mouse hepatic tissue ex vivo following cryoinsult. The observed trends are compared with diffusion-based models. It was observed that the fluorescence intensity of the exposed tissues exhibited slow exponential decay, while the solution in which the tissues were placed inversely gained fluorescence. This slow decay (~3 h) is in contrast to the rapidly diminished fluorescence intensity (seconds) seen in GFP-cell cultures following cryoinsult. These trends suggest that mass diffusion of GFP in the interstitial space, and ultimately into the surrounding medium, is the primary mechanism which determines the fluorescence loss in cryoinjured tissues. These results suggest GFP-transfected tissues may be effectively used as indicators of cryoinjury, and hence viability, following hypothermal insult provided that a sufficiently long incubation is held before observation. It was found that a meaningful observation (15% reduction in fluorescence) could be made three hours subsequent to cryoinjury for the tissues used in this study

    Addendum to: Search for anomalous top-gluon couplings at LHC revisited

    Full text link
    In our latest paper "Search for anomalous top-gluon couplings at LHC revisited" in Eur. Phys. J. C65 (2010), 127-135 (arXiv:0910.3049 [hep-ph]), we studied possible effects of nonstandard top-gluon couplings through the chromoelectric and chromomagnetic moments of the top quark using the total cross section of ppbar/pp --> ttbar X at Tevatron/LHC. There we pointed out that LHC data could give a stronger constraint on those two parameters, which would be hard to obtain from Tevatron data alone. We show here the first CMS measurement of this cross section actually makes it possible.Comment: 5 pages, 1 figure, LaTeX2e, Final version (to appear in Eur. Phys. C

    Genomics clarifies taxonomic boundaries in a difficult species complex.

    Get PDF
    Efforts to taxonomically delineate species are often confounded with conflicting information and subjective interpretation. Advances in genomic methods have resulted in a new approach to taxonomic identification that stands to greatly reduce much of this conflict. This approach is ideal for species complexes, where divergence times are recent (evolutionarily) and lineages less well defined. The California Roach/Hitch fish species complex is an excellent example, experiencing a convoluted geologic history, diverse habitats, conflicting species designations and potential admixture between species. Here we use this fish complex to illustrate how genomics can be used to better clarify and assign taxonomic categories. We performed restriction-site associated DNA (RAD) sequencing on 255 Roach and Hitch samples collected throughout California to discover and genotype thousands of single nucleotide polymorphism (SNPs). Data were then used in hierarchical principal component, admixture, and FST analyses to provide results that consistently resolved a number of ambiguities and provided novel insights across a range of taxonomic levels. At the highest level, our results show that the CA Roach/Hitch complex should be considered five species split into two genera (4 + 1) as opposed to two species from distinct genera (1 +1). Subsequent levels revealed multiple subspecies and distinct population segments within identified species. At the lowest level, our results indicate Roach from a large coastal river are not native but instead introduced from a nearby river. Overall, this study provides a clear demonstration of the power of genomic methods for informing taxonomy and serves as a model for future studies wishing to decipher difficult species questions. By allowing for systematic identification across multiple scales, taxonomic structure can then be tied to historical and contemporary ecological, geographic or anthropogenic factors
    corecore