21,761 research outputs found
Top effective operators at the ILC
We investigate the effect of top trilinear operators in t tbar production at
the ILC. We find that the sensitivity to these operators largely surpasses the
one achievable by the LHC either in neutral or charged current processes,
allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy
of 500 GeV. We show how the use of beam polarisation and an eventual energy
upgrade to 1 TeV allow to disentangle all effective operator contributions to
the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE
Top effective operators at the ILC
We investigate the effect of top trilinear operators in t tbar production at
the ILC. We find that the sensitivity to these operators largely surpasses the
one achievable by the LHC either in neutral or charged current processes,
allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy
of 500 GeV. We show how the use of beam polarisation and an eventual energy
upgrade to 1 TeV allow to disentangle all effective operator contributions to
the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE
Green fluorescent protein as an indicator of cryoinjury in tissues.
The fluorescence intensity of Green Fluorescent Protein (GFP) has previously been demonstrated to be an accurate indicator of cellular viability following cryoinsult in individual GFP-transfected cells. In an attempt to ascertain whether GFP fluorescence intensity may also be used as a viability indicator following cryogenic insults in whole tissues, this study examines the transient fluorescence intensity of GFP-transfected mouse hepatic tissue ex vivo following cryoinsult. The observed trends are compared with diffusion-based models. It was observed that the fluorescence intensity of the exposed tissues exhibited slow exponential decay, while the solution in which the tissues were placed inversely gained fluorescence. This slow decay (~3 h) is in contrast to the rapidly diminished fluorescence intensity (seconds) seen in GFP-cell cultures following cryoinsult. These trends suggest that mass diffusion of GFP in the interstitial space, and ultimately into the surrounding medium, is the primary mechanism which determines the fluorescence loss in cryoinjured tissues. These results suggest GFP-transfected tissues may be effectively used as indicators of cryoinjury, and hence viability, following hypothermal insult provided that a sufficiently long incubation is held before observation. It was found that a meaningful observation (15% reduction in fluorescence) could be made three hours subsequent to cryoinjury for the tissues used in this study
Addendum to: Search for anomalous top-gluon couplings at LHC revisited
In our latest paper "Search for anomalous top-gluon couplings at LHC
revisited" in Eur. Phys. J. C65 (2010), 127-135 (arXiv:0910.3049 [hep-ph]), we
studied possible effects of nonstandard top-gluon couplings through the
chromoelectric and chromomagnetic moments of the top quark using the total
cross section of ppbar/pp --> ttbar X at Tevatron/LHC. There we pointed out
that LHC data could give a stronger constraint on those two parameters, which
would be hard to obtain from Tevatron data alone. We show here the first CMS
measurement of this cross section actually makes it possible.Comment: 5 pages, 1 figure, LaTeX2e, Final version (to appear in Eur. Phys. C
Genomics clarifies taxonomic boundaries in a difficult species complex.
Efforts to taxonomically delineate species are often confounded with conflicting information and subjective interpretation. Advances in genomic methods have resulted in a new approach to taxonomic identification that stands to greatly reduce much of this conflict. This approach is ideal for species complexes, where divergence times are recent (evolutionarily) and lineages less well defined. The California Roach/Hitch fish species complex is an excellent example, experiencing a convoluted geologic history, diverse habitats, conflicting species designations and potential admixture between species. Here we use this fish complex to illustrate how genomics can be used to better clarify and assign taxonomic categories. We performed restriction-site associated DNA (RAD) sequencing on 255 Roach and Hitch samples collected throughout California to discover and genotype thousands of single nucleotide polymorphism (SNPs). Data were then used in hierarchical principal component, admixture, and FST analyses to provide results that consistently resolved a number of ambiguities and provided novel insights across a range of taxonomic levels. At the highest level, our results show that the CA Roach/Hitch complex should be considered five species split into two genera (4 + 1) as opposed to two species from distinct genera (1 +1). Subsequent levels revealed multiple subspecies and distinct population segments within identified species. At the lowest level, our results indicate Roach from a large coastal river are not native but instead introduced from a nearby river. Overall, this study provides a clear demonstration of the power of genomic methods for informing taxonomy and serves as a model for future studies wishing to decipher difficult species questions. By allowing for systematic identification across multiple scales, taxonomic structure can then be tied to historical and contemporary ecological, geographic or anthropogenic factors
Recommended from our members
Planar laser induced fluorescence for temperature measurement of optical thermocavitation
Pulsed laser-induced cavitation, has been the subject of many studies describing bubble growth, collapse and ensuing shock waves. To a lesser extent, hydrodynamics of continuous wave (CW) cavitation or thermocavitation have also been reported. However, the temperature field around these bubbles has not been measured, partly because a sensor placed in the fluid would interfere with the bubble dynamics, but also because the short-lived bubble lifetimes (∼70–200 µs) demand high sampling rates which are costly to achieve via infrared (IR) imaging. Planar laser-induced fluorescence (PLIF) provides a non-intrusive alternative technique to costly IR imaging to measure the temperature around laser-induced cavitation bubbles. A 440 nm laser sheet excites rhodamine-B dye to fluoresce while thermocavitation is induced by a CW 810 nm laser. Post-calibration, the fluorescence intensity captured with a high-speed Phantom Miro camera is correlated to temperature field adjacent to the bubble. Using shadowgraphy and PLIF, a significant decrease in sensible heat is observed in the nucleation site– temperature decreases after bubble collapse and the initial heated volume of liquid shrinks. Based on irradiation time and temperature, the provided optical energy is estimated to be converted up to 50% into acoustic energy based on the bubble's size, with larger bubbles converting larger percentages
- …