5,068 research outputs found

    study of 10,574 cases from five Portuguese hospitals

    Get PDF
    WOS: 000363056900005publishersversionpublishe

    Chromosome Segregation Is Biased by Kinetochore Size

    Get PDF
    Chromosome missegregation during mitosis or meiosis is a hallmark of cancer and the main cause of prenatal death in humans. The gain or loss of specific chromosomes is thought to be random, with cell viability being essentially determined by selection. Several established pathways including centrosome amplification, sister-chromatid cohesion defects, or a compromised spindle assembly checkpoint can lead to chromosome missegregation. However, how specific intrinsic features of the kinetochore—the critical chromosomal interface with spindle microtubules—impact chromosome segregation remains poorly understood. Here we used the unique cytological attributes of female Indian muntjac, the mammal with the lowest known chromosome number (2n = 6), to characterize and track individual chromosomes with distinct kinetochore size throughout mitosis. We show that centromere and kinetochore functional layers scale proportionally with centromere size. Measurement of intra-kinetochore distances, serial-section electron microscopy, and RNAi against key kinetochore proteins confirmed a standard structural and functional organization of the Indian muntjac kinetochores and revealed that microtubule binding capacity scales with kinetochore size. Surprisingly, we found that chromosome segregation in this species is not random. Chromosomes with larger kinetochores bi-oriented more efficiently and showed a 2-fold bias to congress to the equator in a motor-independent manner. Despite robust correction mechanisms during unperturbed mitosis, chromosomes with larger kinetochores were also strongly biased to establish erroneous merotelic attachments and missegregate during anaphase. This bias was impervious to the experimental attenuation of polar ejection forces on chromosome arms by RNAi against the chromokinesin Kif4a. Thus, kinetochore size is an important determinant of chromosome segregation fidelity

    Modeling electrodialysis and a photochemical process for their integration in saline wastewater treatment.

    Get PDF
    Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization

    Exploração mecanizada da floresta tropical úmida sem babaçu.

    Get PDF
    bitstream/item/33767/1/CPATU-CirTec9.pd

    Resonance bifurcations from robust homoclinic cycles

    Full text link
    We present two calculations for a class of robust homoclinic cycles with symmetry Z_n x Z_2^n, for which the sufficient conditions for asymptotic stability given by Krupa and Melbourne are not optimal. Firstly, we compute optimal conditions for asymptotic stability using transition matrix techniques which make explicit use of the geometry of the group action. Secondly, through an explicit computation of the global parts of the Poincare map near the cycle we show that, generically, the resonance bifurcations from the cycles are supercritical: a unique branch of asymptotically stable period orbits emerges from the resonance bifurcation and exists for coefficient values where the cycle has lost stability. This calculation is the first to explicitly compute the criticality of a resonance bifurcation, and answers a conjecture of Field and Swift in a particular limiting case. Moreover, we are able to obtain an asymptotically-correct analytic expression for the period of the bifurcating orbit, with no adjustable parameters, which has not proved possible previously. We show that the asymptotic analysis compares very favourably with numerical results.Comment: 24 pages, 3 figures, submitted to Nonlinearit

    The MobyDick Project: A Mobile Heterogeneous All-IP Architecture

    Get PDF
    Proceedings of Advanced Technologies, Applications and Market Strategies for 3G (ATAMS 2001). Cracow, Poland: 17-20 June, 2001.This paper presents the current stage of an IP-based architecture for heterogeneous environments, covering UMTS-like W-CDMA wireless access technology, wireless and wired LANs, that is being developed under the aegis of the IST Moby Dick project. This architecture treats all transmission capabilities as basic physical and data-link layers, and attempts to replace all higher-level tasks by IP-based strategies. The proposed architecture incorporates aspects of mobile-IPv6, fast handover, AAA-control, and Quality of Service. The architecture allows for an optimised control on the radio link layer resources. The Moby dick architecture is currently under refinement for implementation on field trials. The services planned for trials are data transfer and voice-over-IP.Publicad

    Feedback control of chromosome separation by a midzone Aurora B gradient

    Get PDF
    Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids before nuclear envelope reassembly (NER). However, how these two processes are coordinated remains unknown. Here, we identified a conserved feedback control mechanism that delays chromosome decondensation and NER in response to incomplete chromosome separation during anaphase. A midzone-associated Aurora B gradient was found to monitor chromosome position along the division axis and to prevent premature chromosome decondensation by retaining Condensin I. PP1/PP2A phosphatases counteracted this gradient and promoted chromosome decondensation and NER. Thus, an Aurora B gradient appears to mediate a surveillance mechanism that prevents chromosome decondensation and NER until effective separation of sister chromatids is achieved. This allows the correction and reintegration of lagging chromosomes in the main nuclei before completion of NER.We thank all colleagues who provided reagents and P. Sampaio for technical help with FRET. H. M. is funded by FCOMP-01-0124-FEDER-015941 (PTDC/SAU-ONC/112917/2009) through COMPETE and Fundacao para a Ciencia e a Tecnologia of Portugal, the Human Frontier Science Program, and PRECISE grant from the European Research Council. Data described can be found in the main figures and supplementary materials. The authors declare no conflict of interests

    Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids.

    Get PDF
    Plant growth-promoting bacteria (PGPB) and humic acids (HA) have been used as biostimulants in field conditions. The complete genomic and proteomic transcription of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus is available but interpreting and utilizing this information in the field to increase crop performance is challenging. The identification and characterization of metabolites that are induced by genomic changes may be used to improve plant responses to inoculation. The objective of this study was to describe changes in sugarcane metabolic profile that occur when HA and PGPB are used as biostimulants. Inoculum was applied to soil containing 45-day old sugarcane stalks. One week after inoculation, the methanolic extracts from leaves were obtained and analyzed by gas chromatography coupled to time-of-flight mass spectrometry; a total of 1,880 compounds were observed and 280 were identified in all samples. The application of HA significantly decreased the concentration of 15 metabolites, which generally included amino acids. HA increased the levels of 40 compounds, and these included metabolites linked to the stress response (shikimic, caffeic, hydroxycinnamic acids, putrescine, behenic acid, quinoline xylulose, galactose, lactose proline, oxyproline and valeric acid) and cellular growth (adenine and adenosine derivatives, ribose, ribonic acid and citric acid). Similarly, PGPB enhanced the level of metabolites identified in HA-treated soils; e.g., 48 metabolites were elevated and included amino acids, nucleic acids, organic acids, and lipids. Co-inoculation (HACPGPB) boosted the level of 110 metabolites with respect to non-inoculated controls; these included amino acids, lipids and nitrogenous compounds. Changes in the metabolic profile induced by HA+PGPB influenced both glucose and pentose pathways and resulted in the accumulation of heptuloses and riboses, which are substrates in the nucleoside biosynthesis and shikimic acid pathways. The mevalonate pathway was also activated, thus increasing phytosterol synthesis. The improvement in cellular metabolism observed with PGPB+HA was compatible with high levels of vitamins. Glucuronate and amino sugars were stimulated in addition to the products and intermediary compounds of tricarboxylic acid metabolism. Lipids and amino acids were the main compounds induced by co-inoculation in addition to antioxidants, stress-related metabolites, and compounds involved in cellular redox. The primary compounds observed in each treatment were identified, and the effect of co-inoculation (HACPGPB) on metabolite levels was discussed

    Revisiting Natural Radiation in Itacaré and Guarapari Beaches

    Get PDF
    Human beings are constantly exposed to several types of natural radiation. This paper aims to study the total external dose from northwestern Brazilian beach sands. The samples were collected at Prainha in Itacaré, Bahia, and Praia de AreiaPreta in Guarapari, Espírito Santo. Gamma spectrometry is a very useful technique to estimate the effective dose due to naturally occurring radionuclides, such as 40K and daughters of 238U and 232Th. In order to confirm the high activity present in these two regions, the effective dose due to each natural radionuclide was determined. Moreover, the Energy-Dispersive X-Ray Spectroscopy (EDS) microanalysis was used to characterize the soil composition and the minerals responsible for the high activity. In addition, the sand samples were separated in to magnetic and non-magnetic fractions in order to identify the contribution from each portion of the activity. Finally, the radionuclides and their dispersion in those places are consistent with previous studies, indicating effective doses above the world average that is between 0.3 mSv/year and 1.0 mSv/year

    Semiclassical coherent state propagator for systems with spin

    Full text link
    We derive the semiclassical limit of the coherent state propagator for systems with two degrees of freedom of which one degree of freedom is canonical and the other a spin. Systems in this category include those involving spin-orbit interactions and the Jaynes-Cummings model in which a single electromagnetic mode interacts with many independent two-level atoms. We construct a path integral representation for the propagator of such systems and derive its semiclassical limit. As special cases we consider separable systems, the limit of very large spins and the case of spin 1/2.Comment: 19 pages, no figure
    corecore