8 research outputs found

    Lyman break and ultraviolet-selected galaxies at z ~ 1 - II. PACS 100μm/160μm FIR detections

    Get PDF
    In this work, we report the Photodetector Array Camera and Spectrometer (PACS) 100 μm/160 μm detections of a sample of 42 GALEX-selected and far-infrared (FIR)-detected Lyman break galaxies (LBGs) at z ~ 1 located in the Cosmic Evolution Survey (COSMOS) field and analyse their ultraviolet (UV) to FIR properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger (Reff ~ 4.1 kpc), more massive [log (M*/M⊙) ~ 10.7], dustier [Es(B - V) ~ 0.40], redder in the UV continuum (β ~ -0.60) and UV-brighter [log (LUV/L⊙) ~ 10.1] than PACSundetected LBGs. PACS-detected LBGs at z ~ 1 are mostly disc-like galaxies and are located over the green valley and red sequence of the colour-magnitude diagram of galaxies at their redshift. By using their UV and IR emission, we find that PACS-detected LBGs tend to be less dusty and have slightly higher total star formation rates (SFRs) than other PACS-detected UV-selected galaxies within the same redshift range. As a consequence of the selection effect due to the depth of the FIR observations employed, all our PACS-detected LBGs have total IR luminosities, LIR, higher than 1011 L⊙ and thus are luminous IR galaxies. However, none of the PACS-detected LBGs are in the ultra-luminous IR galaxy (ULIRG) regime, LIR =1012 L⊙, where the FIR observations are complete. The finding of ULIRGs-LBGs at higher redshifts (z ~ 3) suggests an evolution of the FIR emission of LBGs with cosmic time. In an IRX-β diagram, PACS-detected LBGs at z~1 tend to be located around the relation for local starburst similarly to other UV-selected PACS-detected galaxies at the same redshift. Consequently, the dust-correction factors obtained with theirUVcontinuum slope allowus to determine their total SFR, unlike at higher redshifts. However, the dust attenuation derived from UV to NIR SED fitting overestimates the total SFR for most of our PACS-detected LBGs in an age-dependent way: the overestimation factor is higher in younger galaxies. This is likely due to the typical degeneracy between dust attenuation and age in the SED fitting with synthetic templates and highlights the importance of the FIR measurements in the analysis of star-forming galaxies at intermediate redshifts.Generalitat Valenciana PROMETEO-2008/132NASA Office of Space Science NNX09AF08GEuropean Southern Observatory LP175.A-0839Junta de Andalucía TIC-114, P08-TIC-03531Ministerio de Economía y Competitividad AYA2011- 29517-C03-01, AYA2010-22111-C03-02, AYA2010-1516

    The impact from survey depth and resolution on the morphological classification of galaxies

    Get PDF
    We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20moment of light, asymmetry, and smoothness. Three different non-local data sets are used, Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) and Subaru/XMMNewton Deep Survey (SXDS, examples of deep ground-based surveys), and Cosmos Evolution Survey (COSMOS, deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0). Then we simulated them to match the redshift and magnitude distributions of galaxies in the non-local surveys. The comparisons of the two sets allow us to put constraints on the use of each parameter for morphological classification and evaluate the effectiveness of the commonly used morphological diagnostic diagrams. All analysed parameters suffer from biases related to spatial resolution and depth, the impact of the former being much stronger. When including asymmetry and smoothness in classification diagrams, the noise effects must be taken into account carefully, especially for ground-based surveys. M20 is significantly affected, changing both the shape and range of its distribution at all brightness levels. We suggest that diagnostic diagrams based on 2-3 parameters should be avoided when classifying galaxies in ground-based surveys, independently of their brightness; for COSMOS they should be avoided for galaxies fainter than F814 = 23.0. These results can be applied directly to surveys similar to ALHAMBRA, SXDS and COSMOS, and also can serve as an upper/lower limit for shallower/deeper ones.Ministerio de Economía y Competitividad AYA2010-15169, AYA2013-42227-P, AYA2013-4318

    Characterization of Bars Induced by Interactions

    No full text
    Whether the formation of bars is triggered by interactions or by internal processes has been discussed for many decades. In this work, we study differences between both mechanisms by means of numerical simulations. We relate our analysis to fly-by interactions in different mass groups or clusters according to the velocity of the encounters. We find that once the bar is created, the interaction does not much affect its evolution. We also find that bars can be triggered purely by a slow interaction. Those bars affected or triggered by interaction stay for a longer time in the slow regime, i.e., the corotation radius is more than 1.4 times the bar radius

    Low-level control software for the WEAVE spectrograph

    No full text
    International audienceWEAVE is a wide-field spectroscopy facility for WHT which includes a multi-object dual-beam spectrograph which will operate in the visible wavelength range. The blue beam will cover the range 360-600 nm and the red arm will cover the 580-960 nm range. In these ranges the spectrograph will offer a mid-resolution ( 5000), while in three narrower wavelength intervals, two for the blue arm and one for the red one, the instrument will provide a high ( 20000) spectrograph resolution. The spectrograph is currently entering the assembly and integration phase and the first light is foreseen in 2019. The entire WEAVE project is managed by an international consortium led by the University of Oxford. The spectrograph is controlled by a coordination process, the so called High-Level Server, which is part of the Observatory Control System (OCS) software suite, and is the single point of access to the embedded control system, the so called Low-Level Control Software, which is based on PAC technology. This paper describes the design of the embedded software for the control of the spectrograph mechanisms. We first describe the interface between high and low level software, then we present the PAC architecture and discuss the low-level state machine. Finally, we provide details on the principal program routines and describe the engineering interface

    First scientific observations with MEGARA at GTC

    Get PDF
    On June 25th 2017, the new intermediate-resolution optical IFU and MOS of the 10.4-m GTC had its first light. As part of the tests carried out to verify the performance of the instrument in its two modes (IFU and MOS) and 18 spectral setups (identical number of VPHs with resolutions R=6000-20000 from 0.36 to 1 micron) a number of astronomical objects were observed. These observations show that MEGARA@GTC is called to fill a niche of high-throughput, intermediateresolution IFU and MOS observations of extremely-faint narrow-lined objects. Lyman-α absorbers, star-forming dwarfs or even weak absorptions in stellar spectra in our Galaxy or in the Local Group can now be explored to a new level. Thus, the versatility of MEGARA in terms of observing modes and spectral resolution and coverage will allow GTC to go beyond current observational limits in either depth or precision for all these objects. The results to be presented in this talk clearly demonstrate the potential of MEGARA in this regard
    corecore