17 research outputs found

    Módulo de identificación de pasos o situaciones (MIPS)

    Get PDF
    Herramienta de experto para ayudar a la identificación y selección de pasos y situaciones basándose en las propiedades y observaciones capturadas durante la fase de observación

    miR-873-5p targets mitochondrialGNMT-Complex II interface contributing tonon-alcoholic fatty liver disease

    Get PDF
    Objective:Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolicpathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation andfibrosis.The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, isdownregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression.Methods:miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Differentin vitroandin vivoNAFLD murinemodels were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy.Results:We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria.In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondrial functionality in a preclinicalmurine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating withhepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation andfibrosis byenhancing fatty acidb-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment.Conclusion:GNMT participates in the regulation of metabolic pathways and mitochondrial functionality through the regulation of Complex II activityin the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment

    miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease

    Get PDF
    Objective: Non-alcoholic fatly liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolic pathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation and fibrosis. The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, is downregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression. Methods: miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Different in vitro and in vivo NAFLD murine models were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy. Results: We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria. In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondria! functionality in a preclinical murine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating with hepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation and fibrosis by enhancing fatty acid beta-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment. Conclusion: GNMT participates in the regulation of metabolic pathways and mitochondria! functionality through the regulation of Complex II activity in the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment. (C) 2019 The Authors. Published by Elsevier GmbH.This work was supported by grants from NIH (US Department of Health and Human services)-R01AT001576 (to S.C.L., J.M.M., and M.L.M.-C.), Ministerio de Economia, Industria y Competitividad: SAF2017-87301-R (to M.L.M.-C.), SAF2015-64352-R (to P.A.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C.), Gobierno Vasco-Departamento de Educacion IT-336-10 (to PA), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD (M.L.M.-C.), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), Asociacion Espanola contra el Cancer (to T.C.D., P.F.-T. and M.L.M.-C.), Mitotherapeutix (to M.L.M.-C.), Daniel Alagille award from EASL (to T.C.D), Fundacion Cientifica de la Asociacion Espanola Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M.-C.), La Caixa Foundation Program (to M.L.M.-C.), Ayudas Fundacion BBVA a Equipos de Investigacion Cientifica 2019 (to M.L.M.-C.). Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank this work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (to M.V.R.). This work was supported by Fonds National de la Recherche Luxembourg and the Deutsche Forschungsgemeinschaft (C12/BM/3975937, FL/997/7-1, Inter "HepmiRSTAT", to I.B. and F.L.). We thank MINECO for the Severo Ochoa Excellence Accreditation (SEV2016-0644)

    Magnesium accumulation upon cyclin M4 silencing activates microsomal triglyceride transfer protein improving NASH

    Get PDF
    Background & Aims: Perturbations of intracellular magnesium (Mg) homeostasis have implications for cell physiology. The cyclin M family, CNNM, perform key functions in the transport of Mg across cell membranes. Herein, we aimed to elucidate the role of CNNM4 in the development of non-alcoholic steatohepatitis (NASH). Methods: Serum Mg levels and hepatic CNNM4 expression were characterised in clinical samples. Primary hepatocytes were cultured under methionine and choline deprivation. A 0.1% methionine and choline-deficient diet, or a choline-deficient high-fat diet were used to induce NASH in our in vivo rodent models. Cnnm4 was silenced using siRNA, in vitro with DharmaFECT and in vivo with Invivofectamine® or conjugated to N-acetylgalactosamine. Results: Patients with NASH showed hepatic CNNM4 overexpression and dysregulated Mg levels in the serum. Cnnm4 silencing ameliorated hepatic lipid accumulation, inflammation and fibrosis in the rodent NASH models. Mechanistically, CNNM4 knockdown in hepatocytes induced cellular Mg accumulation, reduced endoplasmic reticulum stress, and increased microsomal triglyceride transfer activity, which promoted hepatic lipid clearance by increasing the secretion of VLDLs. Conclusions: CNNM4 is overexpressed in patients with NASH and is responsible for dysregulated Mg transport. Hepatic CNNM4 is a promising therapeutic target for the treatment of NASH. Lay summary: Cyclin M4 (CNNM4) is overexpressed in non-alcoholic steatohepatitis (NASH) and promotes the export of magnesium from the liver. The liver-specific silencing of Cnnm4 ameliorates NASH by reducing endoplasmic reticulum stress and promoting the activity of microsomal triglyceride transfer protein.Ministerio de Ciencia e Innovación, Programa Retos-Colaboración RTC2019-007125-1 (for JS and MLM-C); Instituto de Salud Carlos III, Proyectos de Investigación en Salud DTS20/00138 (for JS and MLM-C); Departamento de Industria del Gobierno Vasco (for MLM-C); Ministerio de Ciencia, Innovación y Universidades MICINN: SAF2017-87301-R and RTI2018-096759-A-100 integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación, cofinanciado con Fondos FEDER (for MLM-C and TCD, respectively); BIOEF (Basque Foundation for Innovation and Health Research); EITB Maratoia BIO15/CA/014; Asociación Española contra el Cáncer (MLM-C, TCD); Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (for MLM); La Caixa Foundation Program (for MLM); Fundacion BBVA UMBRELLA project (for MLM); BFU2015-70067-REDC, BFU2016-77408-R, and BES-2017- 080435 (MINECO / FEDER, UE) and the FIGHT-CNNM2 project from the EJP RD Joint Transnational Call (JTC2019) (Ref. AC19/ 00073) (for LAM-C); RTI2018-095134-B-100 and Grupos de Investigación del Sistema Universitario Vasco (IT971-16) (for PA); National Institutes of Health under grant CA217817 (for DB); AGL2014-54585-R, AGL-2017-86927-R and EQC2018-004897-P from MINECO; PC0148-2016-0149 and PAI-BIO311 from Junta de Andalucía (for FM). Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank Silence Therapeutics plc. for the financial support provided. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV- 2016-0644)

    Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry

    Get PDF
    Aim To determine whether healthcare workers (HCW) hospitalized in Spain due to COVID-19 have a worse prognosis than non-healthcare workers (NHCW). Methods Observational cohort study based on the SEMI-COVID-19 Registry, a nationwide registry that collects sociodemographic, clinical, laboratory, and treatment data on patients hospitalised with COVID-19 in Spain. Patients aged 20-65 years were selected. A multivariate logistic regression model was performed to identify factors associated with mortality. Results As of 22 May 2020, 4393 patients were included, of whom 419 (9.5%) were HCW. Median (interquartile range) age of HCW was 52 (15) years and 62.4% were women. Prevalence of comorbidities and severe radiological findings upon admission were less frequent in HCW. There were no difference in need of respiratory support and admission to intensive care unit, but occurrence of sepsis and in-hospital mortality was lower in HCW (1.7% vs. 3.9%; p = 0.024 and 0.7% vs. 4.8%; p<0.001 respectively). Age, male sex and comorbidity, were independently associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.211, 95%CI 0.067-0.667, p = 0.008). 30-days survival was higher in HCW (0.968 vs. 0.851 p<0.001). Conclusions Hospitalized COVID-19 HCW had fewer comorbidities and a better prognosis than NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not carry more clinical severity nor mortality

    Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting

    Get PDF
    26 p.-6 fig.-1 tab.-1 graph. abst.There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)—the principal methyl donor—acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive β-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.M.V.-R. is supported by Proyecto PID2020-119486RB-100 (funded by MCIN/AEI/10.13039/501100011033), Gilead Sciences International Research Scholars Program in Liver Disease, Acción Estratégica Ciberehd Emergentes 2018 (ISCIII), Fundación BBVA, HORIZON-TMA-MSCA-Doctoral Networks 2021 (101073094), and Redes de Investigación 2022 (RED2022-134485-T). M.L.M.-C. is supported by La CAIXA Foundation (LCF/PR/HP17/52190004), Proyecto PID2020-117116RB-I00 (funded by MCIN/AEI/10.13039/501100011033), Ayudas Fundación BBVA a equipos de investigación científica (Umbrella 2018), and AECC Scientific Foundation (Rare Cancers 2017). A.W. is supported by RTI2018-097503-B-I00 and PID2021-127169OB-I00, (funded by MCIN/AEI/10.13039/501100011033) and by “ERDF A way of making Europe,” Xunta de Galicia (Ayudas PRO-ERC), Fundación Mutua Madrileña, and European Community’s H2020 Framework Programme (ERC Consolidator grant no. 865157 and MSCA Doctoral Networks 2021 no. 101073094). C.M. is supported by CIBERNED. P.A. is supported by Ayudas para apoyar grupos de investigación del sistema Universitario Vasco (IT1476-22), PID2021-124425OB-I00 (funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe,” MCI/UE/ISCiii [PMP21/00080], and UPV/EHU [COLAB20/01]). M.F. and M.G.B. are supported by PID2019-105739GB-I00 and PID2020-115472GB-I00, respectively (funded by MCIN/AEI/10.13039/501100011033). M.G.B. is supported by Xunta de Galicia (ED431C 2019/013). C.A., T.L.-D., and J.B.-V. are recipients of pre-doctoral fellowships from Xunta de Galicia (ED481A-2020/046, ED481A-2018/042, and ED481A 2021/244, respectively). T.C.D. is supported by Fundación Científica AECC. A.T.-R. is a recipient of a pre-doctoral fellowship from Fundación Científica AECC. S.V.A. and C.R. are recipients of Margarita Salas postdoc grants under the “Plan de Recuperación Transformación” program funded by the Spanish Ministry of Universities with European Union’s NextGeneration EU funds (2021/PER/00020 and MU-21-UP2021-03071902373A, respectively). T.C.D., A.S.-R., and M.T.-C. are recipients of Ayuda RYC2020-029316-I, PRE2019/088960, and BES-2016/078493, respectively, supported by MCIN/AEI/10.13039/501100011033 and by El FSE invierte en tu futuro. S.L.-O. is a recipient of a pre-doctoral fellowship from the Departamento de Educación del Gobierno Vasco (PRE_2018_1_0372). P.A.-G. is recipient of a FPU pre-doctoral fellowship from the Ministry of Education (FPU19/02704). CIC bioGUNE is supported by Ayuda CEX2021-001136-S financiada por MCIN/AEI/10.13039/501100011033. A.B.-C. was funded by predoctoral contract PFIS (FI19/00240) from Instituto de Salud Carlos III (ISCIII) co-funded by Fondo Social Europeo (FSE), and A.D.-L. was funded by contract Juan Rodés (JR17/00016) from ISCIII. A.B.-C. is a Miguel Servet researcher (CPII22/00008) from ISCIII.Peer reviewe

    Módulo de identificación de pasos o situaciones (MIPS)

    Get PDF
    Herramienta de experto para ayudar a la identificación y selección de pasos y situaciones basándose en las propiedades y observaciones capturadas durante la fase de observación
    corecore