40 research outputs found

    A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B

    Get PDF
    Upon induction of autophagy, the ubiquitin-like protein LC3 is conjugated to phosphatidylethanolamine (PE) on the inner and outer membrane of autophagosomes to allow cargo selection and autophagosome formation. LC3 undergoes two processing steps, the proteolytic cleavage of pro-LC3 and the de-lipidation of LC3-PE from autophagosomes, both executed by the same cysteine protease ATG4. How ATG4 activity is regulated to co-ordinate these events is currently unknown. Here we find that ULK1, a protein kinase activated at the autophagosome formation site, phosphorylates human ATG4B on serine 316. Phosphorylation at this residue results in inhibition of its catalytic activity in vitro and in vivo. On the other hand, phosphatase PP2A-PP2R3B can remove this inhibitory phosphorylation. We propose that the opposing activities of ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation provide a phospho-switch that regulates the cellular activity of ATG4B to control LC3 processing

    Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells

    Get PDF
    Macroautophagy/autophagy is a cellular degradation pathway that delivers cytoplasmic material to lysosomes via double-membrane organelles called autophagosomes. Lipidation of ubiquitin-like LC3/GABARAP proteins on the autophagosome membrane is important for autophagy. The cysteine protease ATG4 executes 2 LC3/GABARAP processing events: priming of newly synthesized pro-LC3/GABARAP to enable subsequent lipidation, and delipidation/deconjugation of lipidated LC3/GABARAP (the exact purpose of which is unclear in mammals). Four ATG4 isoforms (ATG4A to ATG4D) exist in mammals; however, the functional redundancy of these proteins in cells is poorly understood. Here we show that human HAP1 and HeLa cells lacking ATG4B exhibit a severe but incomplete defect in LC3/GABARAP processing and autophagy. By further genetic depletion of ATG4 isoforms using CRISPR-Cas9 and siRNA we uncover that ATG4A, ATG4C and ATGD all contribute to residual priming activity, which is sufficient to enable lipidation of endogenous GABARAPL1 on autophagic structures. We also demonstrate that expressing high levels of pre-primed LC3B in ATG4-deficient cells can rescue a defect in autophagic degradation of the cargo receptor SQSTM1/p62, suggesting that delipidation by human ATG4 is not essential for autophagosome formation and fusion with lysosomes. Overall, our study provides a comprehensive characterization of ATG4 isoform function during autophagy in human cells

    Discrete Multiscale Analysis: A Biatomic Lattice System

    Full text link
    We discuss a discrete approach to the multiscale reductive perturbative method and apply it to a biatomic chain with a nonlinear interaction between the atoms. This system is important to describe the time evolution of localized solitonic excitations. We require that also the reduced equation be discrete. To do so coherently we need to discretize the time variable to be able to get asymptotic discrete waves and carry out a discrete multiscale expansion around them. Our resulting nonlinear equation will be a kind of discrete Nonlinear Schr\"odinger equation. If we make its continuum limit, we obtain the standard Nonlinear Schr\"odinger differential equation

    Identification of Kinases and Phosphatases That Regulate ATG4B Activity by siRNA and Small Molecule Screening in Cells

    Get PDF
    Autophagy protease ATG4B is a key regulator of the LC3/GABARAP conjugation system required for autophagosome formation, maturation and closure. Members of the ATG4 and the LC3/GABARAP family have been implicated in various diseases including cancer, and targeting the ATG4B protease has been suggested as a potential therapeutic anti-cancer strategy. Recently, it has been demonstrated that ATG4B is regulated by multiple post-translational modifications, including phosphorylation and de-phosphorylation. In order to identify regulators of ATG4B activity, we optimized a cell-based luciferase assay based on ATG4B-dependent release of Gaussia luciferase. We applied this assay in a proof-of-concept small molecule compound screen and identified activating compounds that increase cellular ATG4B activity. Next, we performed a high-throughput screen to identify kinases and phosphatases that regulate cellular ATG4B activity using siRNA mediated knockdown and cDNA overexpression. Of these, we provide preliminary evidence that the kinase AKT2 enhances ATG4B activity in cells. We provide all raw and processed data from the screens as a resource for further analysis. Overall, our findings provide novel insights into the regulation of ATG4B and highlight the importance of post-translational modifications of ATG4B

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia)

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Screening out irrelevant cell-based models of disease

    Get PDF
    The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell-and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates

    Assessment of rst Real-Time IGS global VTEC maps

    No full text
    The assessment of the first Real-Time (RT) IGS global VTEC maps computed by DLR and UPC, against JASON-1 (during 2011) and JASON-2 altimeter VTEC measurements (2012), is presented in this work. Indeed, within the International GNSS Service (IGS), Associate Analysis Centres (ACC) produce specialized or derived products. Two examples of Real-time ACCs are the Universitat Politecnica de Catalunya (UPC) and the German Aerospace Center (DLR). They have participated in the IGS Real Time Pilot Project (RTPP) and continue to collaborate on the development of a combined global IGS RT-VTEC product. This collaboration is occurring under the umbrella of the IGS Ionosphere Working group (IGS Iono-WG) currently lead by the University of Warmia and Mazury in Olsztyn, Poland. RT-VTEC information is used to support earth observation missions and space weather monitoring and forecast. RT-VTEC information can improve single-frequency positioning on a global scale and in smaller regions where the ionosphere may be well sounded. RT-VTEC information is known to improve RTPPP accuracy results for single-frequency users. Through the use of iono-geodetic techniques, phase quality dual-frequency RTPPP results are being improved by reducing the convergence time for phase ambiguity fixing. The JASON comparisons are considered pessimistic for the overall global VTEC product accuracy because the land-based tracking stations are generally located quite far from the location of the JASON measurements. The importance of a reliable globally distributed and suïżœciently dense real-time GNSS tracking network will be shown. Moreover the RT-VTEC results are quite compatible with the rapid and final IGS VTEC maps for a significant fraction of time. These results suggest that it may be feasible to combine real-time VTEC products from several centres into a robust IGS real- time IONO product. Additional work to compare both solutions is underway with the goal of ïżœnding optimal ways to assess and combine these products into an IGS RT- VTEC product. Future efforts will include working with RTCM to ensure that the IGS RT-VTEC product is compatible with ionosphere correction information proposed for the RTCM-SSR standar
    corecore