17 research outputs found
When should a diagnosis of influenza be considered in adults requiring intensive care unit admission? Results of population-based active surveillance in Toronto
INTRODUCTION: There is a paucity of data about the clinical characteristics that help identify patients at high risk of influenza infection upon ICU admission. We aimed to identify predictors of influenza infection in patients admitted to ICUs during the 2007/2008 and 2008/2009 influenza seasons and the second wave of the 2009 H1N1 influenza pandemic as well as to identify populations with increased likelihood of seasonal and pandemic 2009 influenza (pH1N1) infection.
METHODS: Six Toronto acute care hospitals participated in active surveillance for laboratory-confirmed influenza requiring ICU admission during periods of influenza activity from 2007 to 2009. Nasopharyngeal swabs were obtained from patients who presented to our hospitals with acute respiratory or cardiac illness or febrile illness without a clear nonrespiratory aetiology. Predictors of influenza were assessed by multivariable logistic regression analysis and the likelihood of influenza in different populations was calculated.
RESULTS: In 5,482 patients, 126 (2.3%) were found to have influenza. Admission temperature ≥38°C (odds ratio (OR) 4.7 for pH1N1, 2.3 for seasonal influenza) and admission diagnosis of pneumonia or respiratory infection (OR 7.3 for pH1N1, 4.2 for seasonal influenza) were independent predictors for influenza. During the peak weeks of influenza seasons, 17% of afebrile patients and 27% of febrile patients with pneumonia or respiratory infection had influenza. During the second wave of the 2009 pandemic, 26% of afebrile patients and 70% of febrile patients with pneumonia or respiratory infection had influenza.
CONCLUSIONS: The findings of our study may assist clinicians in decision making regarding optimal management of adult patients admitted to ICUs during future influenza seasons. Influenza testing, empiric antiviral therapy and empiric infection control precautions should be considered in those patients who are admitted during influenza season with a diagnosis of pneumonia or respiratory infection and are either febrile or admitted during weeks of peak influenza activity
Population-Based Surveillance for Invasive Pneumococcal Disease in Homeless Adults in Toronto
BACKGROUND: Identification of high-risk populations for serious infection due to S. pneumoniae will permit appropriately targeted prevention programs. METHODS: We conducted prospective, population-based surveillance for invasive pneumococcal disease and laboratory confirmed pneumococcal pneumonia in homeless adults in Toronto, a Canadian city with a total population of 2.5 M, from January 1, 2002 to December 31, 2006. RESULTS: We identified 69 cases of invasive pneumococcal disease and 27 cases of laboratory confirmed pneumococcal pneumonia in an estimated population of 5050 homeless adults. The incidence of invasive pneumococcal disease in homeless adults was 273 infections per 100,000 persons per year, compared to 9 per 100,000 persons per year in the general adult population. Homeless persons with invasive pneumococcal disease were younger than other adults (median age 46 years vs 67 years, P<.001), and more likely than other adults to be smokers (95% vs. 31%, P<.001), to abuse alcohol (62% vs 15%, P<.001), and to use intravenous drugs (42% vs 4%, P<.001). Relative to age matched controls, they were more likely to have underlying lung disease (12/69, 17% vs 17/272, 6%, P = .006), but not more likely to be HIV infected (17/69, 25% vs 58/282, 21%, P = .73). The proportion of patients with recurrent disease was five fold higher for homeless than other adults (7/58, 12% vs. 24/943, 2.5%, P<.001). In homeless adults, 28 (32%) of pneumococcal isolates were of serotypes included in the 7-valent conjugate vaccine, 42 (48%) of serotypes included in the 13-valent conjugate vaccine, and 72 (83%) of serotypes included in the 23-valent polysaccharide vaccine. Although no outbreaks of disease were identified in shelters, there was evidence of clustering of serotypes suggestive of transmission of pathogenic strains within the homeless population. CONCLUSIONS: Homeless persons are at high risk of serious pneumococcal infection. Vaccination, physical structure changes or other program to reduce transmission in shelters, harm reduction programs to reduce rates of smoking, alcohol abuse and infection with bloodborne pathogens, and improved treatment programs for HIV infection may all be effective in reducing the risk
Data from: Prevalence of vancomycin-variable Enterococcus faecium (VVE) among vanA-positive sterile site isolates and patient factors associated with VVE bacteremia
Vancomycin-variable enterococci (VVE) are vanA-positive, vancomycin-susceptible enterococci with the ability to revert to a vancomycin-resistant phenotype on exposure to vancomycin. We sought to assess the prevalence of VVE and to determine clinical characteristics of patients infected with VVE. We prospectively collected Enterococcus faecium sterile site isolates from Toronto Invasive Bacterial Diseases Network hospitals from January 2015 to June 2016 and calculated VVE (defined as vanA-positive, vancomycin-susceptible isolates) prevalence among vanA-containing isolates. We performed chart reviews of VVE and vancomycin-resistant E. faecium (VRE) bacteremias identified from January 2012 to June 2016, and on a random sample of patients with bacteremia due to vanA/vanB-negative, vancomycin-susceptible enterococci (VSE) from January 2015 to June 2016. Clinical characteristics were compared and factors associated with mortality assessed. Because of the potential reversion from VVE to VRE, pulsed-field gel electrophoresis (PFGE) was performed for strains causing breakthrough bacteremia in order to identify relatedness among strains with different phenotypic resistance within the same patient. VVE comprised 47% (18/38) of vanA-positive isolates. The charts of 36 VRE, 25 VVE, and 79 VSE patients were reviewed. Central venous catheter associated bacteremia was more common in VVE (44%) and VRE patients (57%) than in VSE patients (28%) (P=0.01). The Pitt bacteremia (OR 1.3, P=0.002) and the Charlson score (OR 1.2, P=0.008) were the only independent mortality predictors. PFGE of strains causing breakthrough bacteremia showed high within-patient clonality, irrespective of vanA-positivity or vancomycin-susceptibility. A substantial proportion of vanA-positive isolates are VVE and are therefore not detected with conventional selective culture methods. Bacteremia sources of patients with VVE are similar to those infected with VRE. We detected no association between VVE and 30-day mortality or breakthrough bacteremia
EF_SASCode_Tbl2:3
SAS code for analysis of data from chart review and for analysis of mortality risk factor
Number of cases of invasive pneumococcal disease, by month, in homless and housed residents of Toronto, 2002–2006.
<p>Bars represent cases in homeless persons, line represents cases in housed persons. The proportion of infections in homeless persons was significantly greater in summer (14/137, 10.2%) than in fall (23/305, 7.5%), winter (17/345, 4.9%) or spring (13/246, 5.3%), P = .05.</p
Data from: Prevalence of vancomycin-variable Enterococcus faecium (VVE) among vanA-positive sterile site isolates and patient factors associated with VVE bacteremia
Vancomycin-variable enterococci (VVE) are vanA-positive, vancomycin-susceptible enterococci with the ability to revert to a vancomycin-resistant phenotype on exposure to vancomycin. We sought to assess the prevalence of VVE and to determine clinical characteristics of patients infected with VVE. We prospectively collected Enterococcus faecium sterile site isolates from Toronto Invasive Bacterial Diseases Network hospitals from January 2015 to June 2016 and calculated VVE (defined as vanA-positive, vancomycin-susceptible isolates) prevalence among vanA-containing isolates. We performed chart reviews of VVE and vancomycin-resistant E. faecium (VRE) bacteremias identified from January 2012 to June 2016, and on a random sample of patients with bacteremia due to vanA/vanB-negative, vancomycin-susceptible enterococci (VSE) from January 2015 to June 2016. Clinical characteristics were compared and factors associated with mortality assessed. Because of the potential reversion from VVE to VRE, pulsed-field gel electrophoresis (PFGE) was performed for strains causing breakthrough bacteremia in order to identify relatedness among strains with different phenotypic resistance within the same patient. VVE comprised 47% (18/38) of vanA-positive isolates. The charts of 36 VRE, 25 VVE, and 79 VSE patients were reviewed. Central venous catheter associated bacteremia was more common in VVE (44%) and VRE patients (57%) than in VSE patients (28%) (P=0.01). The Pitt bacteremia (OR 1.3, P=0.002) and the Charlson score (OR 1.2, P=0.008) were the only independent mortality predictors. PFGE of strains causing breakthrough bacteremia showed high within-patient clonality, irrespective of vanA-positivity or vancomycin-susceptibility. A substantial proportion of vanA-positive isolates are VVE and are therefore not detected with conventional selective culture methods. Bacteremia sources of patients with VVE are similar to those infected with VRE. We detected no association between VVE and 30-day mortality or breakthrough bacteremia
EF_DataDictionary_ChartReview_Tbl2and3
Data dictionary for CR
Clinical characteristics of episodes of invasive pneumococcal disease in housed and homeless adults, Toronto, 2002–2006.
*<p>Any underlying condition that would make person eligible for pneumococcal vaccination <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0007255#pone.0007255-AlSukhni1" target="_blank">[16]</a>.</p>†<p>Because of difficulty contacting homeless persons post-discharge, a much higher proportion of data is missing for homeless persons.</p>§<p>Receiving antibiotics for this episode of illness when positive blood/sterile site culture obtained.</p>¶<p>Excluding cases with hospital-acquired disease.</p>‡<p>Death during hospitalization.</p>**<p>Denominators vary, because not all information is available for all cases.</p>††<p>For the age-matched analysis, each homeless case was matched to the four non-homeless cases closest in age.</p
EF_TotalData_Tbl1
Shows data on all E. faecium sterile site isolates including susceptibility results and PCR result
PFGE_Table4
Pulsed-field gel electrophoresis of E. faecium blood isolates of patients with breakthrough bacteremia with VSE, VVE or VRE (see Table 4 in manuscript)