4,517 research outputs found
Spectrum of the gauge Ising model in three dimensions
We present a high precision Monte Carlo study of the spectrum of the Ising
gauge theory in three dimensions in the confining phase. Using state of the art
Monte Carlo techniques we are able to accurately determine up to three masses
in a single channel. We compare our results with the SU(2) spectrum and with
the prediction of the Isgur-Paton model. Our data strongly support the
conjecture that the glueball spectrum is described by some type of flux tube
model. We also compare the spectrum with some recent results for the
correlation length in the 3d spin Ising model. This analysis sheds light on
some nontrivial features of the duality transformation.Comment: Talk given at LATTICE9
About the parabolic relation existing between the skewness and the kurtosis in time series of experimental data
In this work we investigate the origin of the parabolic relation between
skewness and kurtosis often encountered in the analysis of experimental
time-series. We argue that the numerical values of the coefficients of the
curve may provide informations about the specific physics of the system
studied, whereas the analytical curve per se is a fairly general consequence of
a few constraints expected to hold for most systems.Comment: To appear in Physica Script
The Large Hadron–Electron Collider at the HL-LHC
Se incluye contenido parcial de los autores, (contiene más de 300 autores)The Large Hadron–Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron–proton and proton–proton operations. This report represents an update to the LHeC’s conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton–nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron–hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies
Quantum superposition principle and generation of ultrashort optical pulses
We discuss the propagation of laser radiation through a medium of quantum
prepared {\Lambda}-type atoms in order to enhance the insight into the physics
of QS-PT generator suggested in Phys. Rev. A 80, 035801 (2009). We obtain
analytical results which give a qualitatively corerct description of the
outcoming series of ultrashort optical pulses and show that for the case of
alkali vapor medium QS-PT generation may be implemented under ordinary
experimental conditions
The nonrelativistic limit of the Magueijo-Smolin model of deformed special relativity
We study the nonrelativistic limit of the motion of a classical particle in a
model of deformed special relativity and of the corresponding generalized
Klein-Gordon and Dirac equations, and show that they reproduce nonrelativistic
classical and quantum mechanics, respectively, although the rest mass of a
particle no longer coincides with its inertial mass. This fact clarifies the
meaning of the different definitions of velocity of a particle available in DSR
literature. Moreover, the rest mass of particles and antiparticles differ,
breaking the CPT invariance. This effect is close to observational limits and
future experiments may give indications on its effective existence.Comment: 10 pages, plain TeX. Discussion of generalized Dirac equation and CPT
violation adde
The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments
The GERDA and Majorana experiments will search for neutrinoless double-beta
decay of germanium-76 using isotopically enriched high-purity germanium
detectors. Although the experiments differ in conceptual design, they share
many aspects in common, and in particular will employ similar data analysis
techniques. The collaborations are jointly developing a C++ software library,
MGDO, which contains a set of data objects and interfaces to encapsulate, store
and manage physical quantities of interest, such as waveforms and high-purity
germanium detector geometries. These data objects define a common format for
persistent data, whether it is generated by Monte Carlo simulations or an
experimental apparatus, to reduce code duplication and to ease the exchange of
information between detector systems. MGDO also includes general-purpose
analysis tools that can be used for the processing of measured or simulated
digital signals. The MGDO design is based on the Object-Oriented programming
paradigm and is very flexible, allowing for easy extension and customization of
the components. The tools provided by the MGDO libraries are used by both GERDA
and Majorana.Comment: 4 pages, 1 figure, proceedings for TAUP201
Attosecond pulse shaping around a Cooper minimum
High harmonic generation (HHG) is used to measure the spectral phase of the
recombination dipole matrix element (RDM) in argon over a broad frequency range
that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well
with predictions based on the scattering phases and amplitudes of the
interfering s- and d-channel contributions to the complementary photoionization
process. The reconstructed attosecond bursts that underlie the HHG process show
that the derivative of the RDM spectral phase, the group delay, does not have a
straight-forward interpretation as an emission time, in contrast to the usual
attochirp group delay. Instead, the rapid RDM phase variation caused by the CM
reshapes the attosecond bursts.Comment: 5 pages, 5 figure
- …