3,871 research outputs found

    Impossible shadows and lightness constancy

    Get PDF
    The intersection between an illumination and a reflectance edge is characterised by the `ratio-invariant' property, that is the luminance ratio of the regions under different illumination remains the same. In a CRT experiment, we shaped two areas, one surrounding the other, and simulated an illumination edge dividing them in two frames of illumination. The portion of the illumina- tion edge standing on the surrounding area (labelled contextual background) was the contextual edge, while the portion standing on the enclosed area (labelled mediating background) was the mediating edge. On the mediating background, there were two patches, one per illumination frame. Observers were asked to adjust the luminance of the patch in bright illumination to equate the lightness of the other. We compared conditions in which the luminance ratio at the contextual edge could be (i) equal (possible shadow), or (ii) larger (impossible shadow) than that at the mediating edge. In addition, we manipulated the reflectance of the backgrounds. It could be higher for the contextual than for the mediating background; or, vice versa, lower for the contextual than for the mediating background. Results reveal that lightness constancy significantly increases when: (i) the luminance ratio at the contextual edge is larger than that at the mediating edge creating an impossible shadow, and (ii) the reflectance of the contextual background is lower than that of the mediating one. We interpret our results according to the albedo hypothesis, and suggest that the scission process is facilitated when the luminance ratio at the contextual edge is larger than that at the mediating edge and/or the reflectance of the including area is lower than that of the included one. This occurs even if the ratio-invariant property is violated

    Mixed quantum-classical dynamics from the exact decomposition of electron-nuclear motion

    Full text link
    We present a novel mixed quantum-classical approach to the coupled electron-nuclear dynamics based on the exact factorization of the electron-nuclear wave function, recently proposed in [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)]. In this framework, classical nuclear dynamics is derived as the lowest order approximation of the time dependent Schr\"odinger equation that describes the evolution of the nuclei. The effect of the time dependent scalar and vector potentials, representing the exact electronic back-reaction on the nuclear subsystem, is consistently derived within the classical approximation. We examine with an example the performance of the proposed mixed quantum-classical scheme in comparison with exact calculations

    Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76

    Full text link
    The GERDA experiment searches for the neutrinoless double beta decay of Ge-76 using high-purity germanium detectors enriched in Ge-76. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay events and to discriminate them from gamma-ray induced backgrounds. Enhanced pulse shape discrimination capabilities of "Broad Energy Germanium" detectors with a small read-out electrode have been recently reported. This paper describes the full simulation of the response of such a detector, including the Monte Carlo modeling of radiation interaction and subsequent signal shape calculation. A pulse shape discrimination method based on the ratio between the maximum current signal amplitude and the event energy applied to the simulated data shows quantitative agreement with the experimental data acquired with calibration sources. The simulation has been used to study the survival probabilities of the decays which occur inside the detector volume and are difficult to assess experimentally. Such internal decay events are produced by the cosmogenic radio-isotopes Ge-68 and Co-60 and the neutrinoless double beta decay of Ge-76. Fixing the experimental acceptance of the double escape peak of the 2.614 MeV photon to 90%, the estimated survival probabilities at Qbb = 2.039 MeV are (86+-3)% for Ge-76 neutrinoless double beta decays, (4.5+-0.3)% for the Ge-68 daughter Ga-68, and (0.9+0.4-0.2)% for Co-60 decays.Comment: 27 pages, 17 figures. v2: fixed typos and references. Submitted to JINS

    On the mass of atoms in molecules: Beyond the Born-Oppenheimer approximation

    Full text link
    Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires to include the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue still is not solved in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an adiabatic-like point of view: the nuclear degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia of electrons is accounted for and the total mass of the system is recovered. This constitutes a general framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded particles. We illustrate it with a model of proton transfer, where the light particle is the proton, and with corrections to the vibrational spectra of molecules. Inclusion of the light particle inertia allows to gain orders of magnitude in accuracy

    Ultrafast dynamics with the exact factorization

    Full text link
    The exact factorization of the time-dependent electron-nuclear wavefunction has been employed successfully in the field of quantum molecular dynamics simulations for interpreting and simulating light-induced ultrafast processes. In this work, we summarize the major developments leading to the formulation of a trajectory-based approach, derived from the exact factorization equations, capable of dealing with nonadiabatic electronic processes, and including spin-orbit coupling and the non-perturbative effect of an external time-dependent field. This trajectory-based quantum-classical approach has been dubbed coupled-trajectory mixed quantum-classical (CT-MQC) algorithm, whose performance is tested here to study the photo-dissociation dynamics of IBr
    corecore