Ultrafast dynamics with the exact factorization

Abstract

The exact factorization of the time-dependent electron-nuclear wavefunction has been employed successfully in the field of quantum molecular dynamics simulations for interpreting and simulating light-induced ultrafast processes. In this work, we summarize the major developments leading to the formulation of a trajectory-based approach, derived from the exact factorization equations, capable of dealing with nonadiabatic electronic processes, and including spin-orbit coupling and the non-perturbative effect of an external time-dependent field. This trajectory-based quantum-classical approach has been dubbed coupled-trajectory mixed quantum-classical (CT-MQC) algorithm, whose performance is tested here to study the photo-dissociation dynamics of IBr

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 08/08/2023