7 research outputs found

    Chicken Anti-Campylobacter Vaccine – Comparison of Various Carriers and Routes of Immunization

    Get PDF
    Campylobacter spp, especially the species Campylobacter jejuni, are important human enteropathogens responsible for millions of cases of gastro-intestinal disease worldwide every year. C. jejuni is a zoonotic pathogen, and poultry meat that has been contaminated by microorganisms is recognized as a key source of human infections. Although numerous strategies have been developed and experimentally checked to generate chicken vaccines, the results have so far had limited success. In this study, we explored the potential use of non-live carriers of Campylobacter antigen to combat Campylobacter in poultry. First, we assessed the effectiveness of immunization with orally or subcutaneously delivered GEM (Gram-positive Enhancer Matrix) particles carrying two Campylobacter antigens: CjaA and CjaD. These two immunization routes using GEMs as the vector did not protect against Campylobacter colonization. Thus, we next assessed the efficacy of in ovo immunization using various delivery systems: GEM particles and liposomes. The hybrid protein CjaAD, which is CjaA presenting CjaD epitopes on its surface, was employed as a model antigen. We found that CjaAD administered in ovo at embryonic development day 18 by both delivery systems resulted in significant levels of protection after challenge with a heterologous Campylobacter jejuni strain. In practice, in ovo chicken vaccination is used by the poultry industry to protect birds against several viral diseases. Our work showed that this means of delivery is also efficacious with respect to commensal bacteria such as Campylobacter. In this study, we evaluated the protection after one dose of vaccine given in ovo. We speculate that the level of protection may be increased by a post-hatch booster of orally delivered antigens

    Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours—A Research Hypothesis

    No full text
    The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood–brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas

    Magnetotactic Bacteria and Magnetosomes as Smart Drug Delivery Systems: A New Weapon on the Battlefield with Cancer?

    No full text
    An important direction of research in increasing the effectiveness of cancer therapies is the design of effective drug distribution systems in the body. The development of the new strategies is primarily aimed at improving the stability of the drug after administration and increasing the precision of drug delivery to the destination. Due to the characteristic features of cancer cells, distributing chemotherapeutics exactly to the microenvironment of the tumor while sparing the healthy tissues is an important issue here. One of the promising solutions that would meet the above requirements is the use of Magnetotactic bacteria (MTBs) and their organelles, called magnetosomes (BMs). MTBs are commonly found in water reservoirs, and BMs that contain ferromagnetic crystals condition the magnetotaxis of these microorganisms. The presented work is a review of the current state of knowledge on the potential use of MTBs and BMs as nanocarriers in the therapy of cancer. The growing amount of literature data indicates that MTBs and BMs may be used as natural nanocarriers for chemotherapeutics, such as classic anti-cancer drugs, antibodies, vaccine DNA, and siRNA. Their use as transporters increases the stability of chemotherapeutics and allows the transfer of individual ligands or their combinations precisely to cancerous tumors, which, in turn, enables the drugs to reach molecular targets more effectively

    Lactic acid bacteria as a surface display platform for Campylobacter jejuni antigens.

    Get PDF
    BACKGROUND Food poisoning and diarrheal diseases continue to pose serious health care and socioeconomic problems worldwide. Campylobacter spp. is a very widespread cause of gastroenteritis. Over the past decade there has been increasing interest in the use of lactic acid bacteria (LAB) as mucosal delivery vehicles. They represent an attractive opportunity for vaccination in addition to vaccination with attenuated bacterial pathogens. METHODS We examined the binding ability of hybrid proteins to nontreated or trichloroacetic acid (TCA)-pretreated LAB cells by immunofluorescence and Western blot analysis. RESULTS In this study we evaluated the possibility of using GEM (Gram-positive enhancer matrix) particles of Lactobacillus salivarius as a binding platform for 2 conserved, immunodominant, extracytoplasmic Campylobacter jejuni proteins: CjaA and CjaD. We analyzed the binding ability of recombinant proteins that contain C. jejuni antigens (CjaA or CjaD) fused with the protein anchor (PA) of the L. lactis peptidoglycan hydrolase AcmA, which comprises 3 LysM motifs and determines noncovalent binding to the cell wall peptidoglycan. Both fused proteins, i.e. 6HisxCjaAx3LysM and 6HisxCjaDx3LysM, were able to bind to nontreated or TCA-pretreated L. salivarius cells. CONCLUSION Our results documented that the LysM-mediated binding system allows us to construct GEM particles that present 2 C. jejuni antigens

    Modified Baby Milk—Bioelements Composition and Toxic Elements Contamination

    No full text
    Breast milk has the most suitable composition for the proper development in the first year of a child’s life. However, it is often replaced with artificial milk. The aim of the study was to analyze the composition of essential elements: Na, K, Ca, P, Mg, Fe, Zn, Cu, and Mn as well as toxic elements: Ni, Pb, Sr, Li, and In in 18 formulas available in Poland. The daily supply was also estimated. The study was performed by Inductively Coupled Plasma Optical Emission Spectrometry method. The results showed the presence of all essential elements tested, but the content of P and Mn significantly differed from the concentrations declared. Such discrepancies can have significant impact on the daily dose of the bioelements taken. However, the content of elements was within the reference standards established by the EU Directive with exception of P, the amount of which exceeded the norms 5.23–18.80-times. Daily supply of P in tested milk as well as Fe and Mn provided with first and hypoallergenic formula exceeded the adequate intake. Analysis revealed the contamination with harmful elements—Pb, Sr, Li, and In were detected in almost all products. The study confirms the data concerning some discrepancies in composition and the contamination of food and may provide information on the feeding quality of children and estimation of health risk associated with exposure to toxic elements
    corecore