27 research outputs found

    R5-SHIV Induces Multiple Defects in T Cell Function during Early Infection of Rhesus Macaques Including Accumulation of T Reg Cells in Lymph Nodes

    Get PDF
    Background: HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. Methods: Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. Results/Conclusions: We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection

    Exploring the Clinical and Genetic Spectrum of Steroid Resistant Nephrotic Syndrome: The PodoNet Registry

    No full text
    Background: Steroid resistant nephrotic syndrome (SRNS) is a rare condition, accounting for 10–15% of all children with idiopathic nephrotic syndrome. SRNS can be caused by genetic abnormalities or immune system dysfunction. The prognosis of SRNS varies from permanent remission to progression to end-stage kidney disease, and post-transplant recurrence is common.Objectives: The PodoNet registry project aims to explore the demographics and phenotypes of immune-mediated and genetic forms of childhood SRNS, to assess genotype-phenotype correlations, to evaluate clinical management and long-term outcomes, and to search for novel genetic entities and diagnostic and prognostic biomarkers in SRNS.Methods: In 2009, an international registry for SRNS was established to collect retro- and prospective information on renal and extrarenal disease manifestations, histopathological and genetic findings and information on family history, pharmacotherapy responsiveness and long-term outcomes. To date, more than 2,000 patients have been enrolled at 72 pediatric nephrology centers, constituting the largest pediatric SRNS cohort assembled to date.Results: In the course of the project, traditional Sanger sequencing was replaced by NGS-based gene panel screening covering over 30 podocyte-related genes complemented by whole exome sequencing. These approaches allowed to establish genetic diagnoses in 24% of the patients screened, widened the spectrum of genetic disease entities presenting with SRNS phenotype (COL4A3-5, CLCN5), and contributed to the discovery of new disease causing genes (MYOE1, PTPRO). Forty two percent of patients responded to intensified immunosuppression with complete or partial remission of proteinuria, whereas 58% turned out multi-drug resistant. Medication responsiveness was highly predictive of a favorable long-term outcome, whereas the diagnosis of genetic disease was associated with a high risk to develop end-stage renal disease during childhood. Genetic SRNS forms were generally resistant to immunosuppressive treatment, justifying to avoid such pharmacotherapies altogether once a genetic diagnosis is established. Even symptomatic anti-proteinuric treatment with RAS antagonists seems to be challenging and of limited efficacy in genetic forms of SRNS. The risk of post-transplant disease recurrence was around 30% in non-genetic SRNS whereas it is negligible in genetic cases.Conclusion: In summary, the PodoNet Registry has collected detailed clinical and genetic information in a large SRNS cohort and continues to generate fundamental insights regarding demographic and etiological disease aspects, genotype-phenotype associations, the efficacy of therapeutic strategies, and long-term patient and renal outcomes including post-transplant disease recurrence

    Management of children with congenital nephrotic syndrome: challenging treatment paradigms

    No full text
    WOS: 000493307500019PubMed ID: 30215773Background. Management of children with congenital nephrotic syndrome (CNS) is challenging. Bilateral nephrectomies followed by dialysis and transplantation are practiced in most centres, but conservative treatment may also be effective. Methods. We conducted a 6-year review across members of the European Society for Paediatric Nephrology Dialysis Working Group to compare management strategies and their outcomes in children with CNS. Results. Eighty children (50% male) across 17 tertiary nephrology units in Europe were included (mutations in NPHS1, n = 55; NPHS2, n = 1; WT1, n = 9; others, n = 15). Excluding patients with mutations in WT1, antiproteinuric treatment was given in 42 (59%) with an increase in S-albumin in 70% by median 6 (interquartile range: 3-8) g/L (P< 0.001). Following unilateral nephrectomy, S-albumin increased by 4 (1-8) g/L (P = 0.03) with a reduction in albumin infusion dose by 5 (2-9) g/kg/week (P = 0.02). Median age at bilateral nephrectomies (n = 29) was 9 (7-16) months. Outcomes were compared between two groups of NPHS1 patients: those who underwent bilateral nephrectomies (n = 25) versus those on conservative management (n = 17). The number of septic or thrombotic episodes and growth were comparable between the groups. The response to antiproteinuric treatment, as well as renal and patient survival, was independent of NPHS1 mutation type. At final follow-up (median age 34months) 20 (80%) children in the nephrectomy group were transplanted and 1 died. In the conservative group, 9 (53%) remained without dialysis, 4 (24%; P< 0.001) were transplanted and 2 died. Conclusion. An individualized, stepwise approach with prolonged conservative management may be a reasonable alternative to early bilateral nephrectomies and dialysis in children with CNS and NPHS1 mutations. Further prospective studies are needed to define indications for unilateral nephrectomy.National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust and University College, London; National Institute for Health Research (NIHR)National Institute for Health Research (NIHR)This work was supported by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust and University College, London. R.S. holds a Career Development Fellowship with the National Institute for Health Research (NIHR)
    corecore