10 research outputs found

    QTLs and candidate genes for desiccation and abscisic acid content in maize kernels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes.</p> <p>Results</p> <p>The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive <it>Rab17 </it>and <it>Rab28 </it>genes as well as the late embryogenesis abundant <it>Emb5 </it>and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two <it>zeaxanthin epoxidase </it>(<it>ZEP</it>) and five novel <it>9-cis-epoxycarotenoid dioxygenase </it>(<it>NCED</it>) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue.</p> <p>Conclusions</p> <p>A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize <it>NCED </it>gene family and another maize <it>ZEP </it>gene were identified and mapped. Among all the identified candidates, aquaporins and members of the <it>Responsive to ABA </it>gene family appeared better candidates than <it>NCEDs </it>and <it>ZEPs</it>.</p

    Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris

    Get PDF
    Mitochondrial electron transport pathways exert effects on carbon–nitrogen (C/N) relationships. To examine whether mitochondria–N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in N. sylvestris seedlings showed classic responses to nitrate and sucrose availability. In contrast, CMSII showed an altered ‘nitrate-sensing’ phenotype with decreased sensitivity to C and N metabolites. The WT growth phenotype was restored in CMSII seedling roots by high nitrate plus sugars and in shoots by gibberellic acid (GA). Genome-wide cDNA-amplified fragment length polymorphism (AFLP) analysis of leaves from mature plants revealed that only a small subset of transcripts was altered in CMSII. Tissue abscisic acid content was similar in CMSII and WT roots and shoots, and growth responses to zeatin were comparable. However, the abundance of key transcripts associated with GA synthesis was modified both by the availability of N and by the CMSII mutation. The CMSII mutant maintained a much higher shoot/root ratio at low N than WT, whereas no difference was observed at high N. Shoot/root ratios were strikingly correlated with root amines/nitrate ratios, values of <1 being characteristic of high N status. We propose a model in which the amine/nitrate ratio interacts with GA signalling and respiratory pathways to regulate the partitioning of biomass between shoots and roots
    corecore