717 research outputs found

    Geometry of Winter Model

    Full text link
    By constructing the Riemann surface controlling the resonance structure of Winter model, we determine the limitations of perturbation theory. We then derive explicit non-perturbative results for various observables in the weak-coupling regime, in which the model has an infinite tower of long-lived resonant states. The problem of constructing proper initial wavefunctions coupled to single excitations of the model is also treated within perturbative and non-perturbative methods.Comment: latex file, 56 pages, 15 figure

    Inclusive Measure of |V_ub| with the Analytic Coupling Model

    Get PDF
    By analyzing B -> X_u l nu_l spectra with a model based on soft-gluon resummation and an analytic time-like QCD coupling, we obtain |V_ub| = (3.76 +-0.13 +- 0.22)*10^(-3), where the first and the second error refers to experimental and theoretical errors, respectively. The V_ub value is obtained from the available measured semileptonic branching fractions in limited regions of the phase-space. The distributions in the lepton energy E_l, the hadron invariant mass m_X, the light-cone momentum P_+ = E_X - p_X, together with the double distributions in (m_X,q^2) and (E_l,s_h^max), are used to select the phase-space regions. The q^2 is the dilepton squared momentum and s_h^max is the maximal m_X^2 at fixed q^2 and E_l. The V_ub value obtained is in complete agreement with the value coming from exclusive B decays and from an over-all fit to the Standard Model parameters. We show that the slight disagreement (up to +2 sigma) with respect to previous inclusive measurements is not related to different choices for the b (and c) masses but to a different modelling of the threshold (Sudakov) region.Comment: 19 pages, 2 figures, revised version accepted in Eur.Phys.J.

    Renormalization in Winter Model

    Full text link
    We show that metastable states in Winter model can be related to the eigenstates of a particle in a box by means of renormalization and mixing.Comment: Version accepted by Phys. Rev. A, containing some small additional comments and explanation

    Radiatively corrected shape function for inclusive heavy hadron decays

    Get PDF
    We discuss the non-perturbative and the radiative corrections to inclusive B decays from the point of view known from QED corrections to high energy e^+ e^- processes. Here the leading contributions can be implemented through the so called ``radiator function'' which corresponds to the shape function known in heavy hadron decays. In this way some new insight into the origin of the shape function is obtained. As a byproduct, a parameterization of the radiatively corrected shape function is suggested which can be implemented in Monte Carlo studies of inclusive heavy hadron decays.Comment: LaTeX, uses a4, graphicx and psfrag, 10 pages. The complete paper is also available at http://www-ttp.physik.uni-karlsruhe.de/Preprints

    Heavy-to-Light Form Factors in the Final Hadron Large Energy Limit of QCD

    Get PDF
    We argue that the Large Energy Effective Theory (LEET), originally proposed by Dugan and Grinstein, is applicable to exclusive semileptonic, radiative and rare heavy-to-light transitions in the region where the energy release E is large compared to the strong interaction scale and to the mass of the final hadron, i.e. for q^2 not close to the zero-recoil point. We derive the Effective Lagrangian from the QCD one, and show that in the limit of heavy mass M for the initial hadron and large energy E for the final one, the heavy and light quark fields behave as two-component spinors. Neglecting QCD short-distance corrections, this implies that there are only three form factors describing all the pseudoscalar to pseudoscalar or vector weak current matrix elements. We argue that the dependence of these form factors with respect to M and E should be factorizable, the M-dependence (sqrt(M)) being derived from the usual heavy quark expansion while the E-dependence is controlled by the behaviour of the light-cone distribution amplitude near the end-point u=1. The usual expectation of the (1-u) behaviour leads to a 1/E^2 scaling law, that is a dipole form in q^2. We also show explicitly that in the appropriate limit, the Light-Cone Sum Rule method satisfies our general relations as well as the scaling laws in M and E of the form factors, and obtain very compact and simple expressions for the latter. Finally we note that this formalism gives theoretical support to the quark model-inspired methods existing in the literature.Comment: Latex2e, 25 pages, no figure. Slight changes in the title and the phrasing. Misprint in Eq. (25) corrected. To appear in Phys. Rev.

    The PMS project: Poor Man's Supercomputer

    Get PDF
    We briefly describe the Poor Man's Supercomputer (PMS) project carried out at Eotvos University, Budapest. The goal was to develop a cost effective, scalable, fast parallel computer to perform numerical calculations of physical problems that can be implemented on a lattice with nearest neighbour interactions. To this end we developed the PMS architecture using PC components and designed a special, low cost communication hardware and the driver software for Linux OS. Our first implementation of PMS includes 32 nodes (PMS1). The performance of PMS1 was tested by Lattice Gauge Theory simulations. Using SU(3) pure gauge theory or bosonic MSSM on PMS1 we obtained 3/Mflopand0.45/Mflop and 0.45Mflop price-to-sustained performance for double and single precision operations, respectively. The design of the special hardware and the communication driver are freely available upon request for non-profit organizations.Comment: Latex, 13 pages, 6 figures included, minor additions, typos correcte

    Form factors of heavy-to-light B decays at large recoil

    Get PDF
    General relations between the form factors of B decays to light mesons are derived using the heavy quark and large recoil expansion. On their basis the complete account of contributions of second order in the ratio of the light meson mass to the large recoil energy is performed. Both ground and excited final meson states are considered. It is shown that most of the known form factor relations remain valid after the inclusion of quadratic mass corrections. The validity of some of such relations requires additional equalities for the helicity amplitudes. It is found that all these relations and equalities are fulfilled in the relativistic quark model based on the quasipotential approach in quantum field theory. The contribution of 1/m_b corrections to the branching fraction of the rare radiative B decay is discussed.Comment: 23 pages, revte

    Young’s modulus and hardness of multiphase CaZrO3 -MgO ceramics by micro and nanoindentation

    Get PDF
    The aim of this work is to determine the values of the hardness and elastic modulus of the phases present in CaZrO3-MgO-ZrO2 composites and to analyse their contribution to the composite properties. Two materials previously developed with the same major phases (CaZrO3, MgO and c-ZrO2) present in different volume fractions and grain size have been analysed. The hardness and Young´s modulus of each phase determined by nanoindentation are independent from the specific composite and coincident with nanoindentation values for single phase bulk materials. The contribution of the individual phases to Young´s modulus of the multiphase materials is in agreement with calculations using the nanoindentation values and the Voight upper limit of the “rule of mixtures”. Scale dependence due to microcracking has been observed for microhardness values of the composites and differences between calculations and experimental values are related to this effect.This work was performed in the frame of the CYTEDnetwork HOREF(312RT0453)and was supported by the Spanish Government underprojectMAT2013-48426-C2-1-R.AbílioP.Silvaacknowledges thefinancialsupportofJECSTrustthroughmobilityContract201597 and Instituto de Cerámica y Vidrio–CSIC.info:eu-repo/semantics/publishedVersio
    • …
    corecore