1,534 research outputs found

    The ALICE Level 0 Pixel Trigger Driver Layer

    Get PDF
    The ALICE Silicon Pixel Detector (SPD) comprises the two innermost layers of the ALICE inner tracker system. The SPD contains 120 detector modules each including 10 readout chips. Each of these pixel chips generates a digital Fast-OR output signal indicating the presence of at least one pixel hit in its pixel matrix. The Pixel Trigger (PIT) System has been implemented to process the 1200 Fast-Or signals from the SPD and provides an input signal to the ALICE Central Trigger Processor (CTP) for the fastest (Level 0) trigger decision within a latency of 800 ns. The PIT processor interfaces with several ALICE systems: it receives input data from the SPD, it accepts configuration commands from the CTP and sends status information to the Alice Experimental Control System (ECS). The PIT control system required an accurate design of hardware and software solutions to implement coordinated operation of the PIT and the ALICE systems to which it interfaces to. We present here the design, the implementation and the first operational experience of the PIT Control and Calibration system. The hardware configuration and control are implemented via the ALICE Detector Data Link, on top of which a custom control system has been implemented. A driver layer has been realized under stringent requirements of robustness and reusability. It qualifies as a general purpose hardware driver for electronic systems equipped with the ALICE DDL front end board (SIU). Various testing and calibration procedures need to be performed on the SPD and the PIT systems in order to provide an optimized trigger signal to the CTP. These include methods to compensate all signals propagation delays and automatic SPD DAC scans to tune the detector response. The PIT control system has been tailored to implement automatically most of the former procedures, requiring coordinated and extensive information exchange between the interfacing systems.CER

    Digital Pixel Test Structures implemented in a 65 nm CMOS process

    Full text link
    The ALICE ITS3 (Inner Tracking System 3) upgrade project and the CERN EP R&D on monolithic pixel sensors are investigating the feasibility of the Tower Partners Semiconductor Co. 65 nm process for use in the next generation of vertex detectors. The ITS3 aims to employ wafer-scale Monolithic Active Pixel Sensors thinned down to 20 to 40 um and bent to form truly cylindrical half barrels. Among the first critical steps towards the realisation of this detector is to validate the sensor technology through extensive characterisation both in the laboratory and with in-beam measurements. The Digital Pixel Test Structure (DPTS) is one of the prototypes produced in the first sensor submission in this technology and has undergone a systematic measurement campaign whose details are presented in this article. The results confirm the goals of detection efficiency and non-ionising and ionising radiation hardness up to the expected levels for ALICE ITS3 and also demonstrate operation at +20 C and a detection efficiency of 99% for a DPTS irradiated with a dose of 101510^{15} 1 MeV neq/_{\mathrm{eq}}/cm2^2. Furthermore, spatial, timing and energy resolutions were measured at various settings and irradiation levels.Comment: Updated threshold calibration method. Implemented colorblind friendly color palette in all figures. Updated reference

    Event-by-event mean pT fluctuations in pp and Pb–Pb collisions at the LHC

    Get PDF
    Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at TeX TeX 0.9, 2.76 and 7 TeV, and Pb–Pb collisions at TeX TeX 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb–Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb–Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb–Pb are in qualitative agreement with previous measurements in Au–Au at lower collision energies and with expectations from models that incorporate collective phenomena

    Production of charged pions, kaons and protons at large transverse momenta in pp and Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV

    Get PDF
    Transverse momentum spectra of π±,K±\pi^{\pm}, K^{\pm} and p(pˉ)p(\bar{p}) up to pTp_T = 20 GeV/c at mid-rapidity, |y| ≤\le 0.8, in pp and Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV have been measured using the ALICE detector at the LHC. At intermediate pTp_T (2-8 GeV/c) an enhancement of the proton-to-proton ratio, (p + \bar{p})/(\pi^+ + \pi^-\(), with respect to pp collisions is observed and the ratio reaches 0.80 in central Pb-Pb collisions. The measurement of the nuclear modification factors for \(\pi^{\pm}, K^{\pm} and p(pˉ)p(\bar{p}) indicates that within the systematic and statistical uncertainties they are the same at high pTp_T (> 10 GeV/c), suggesting that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets.publishedVersio

    Dehydroepiandrosterone sulfate mediates activation of transcription factors CREB and ATF-1 via a Gα11-coupled receptor in the spermatogenic cell line GC-2

    Get PDF
    AbstractDehydroepiandrosterone sulfate (DHEAS) is a circulating steroid produced in the adrenal cortex, brain, and gonads. Whereas a series of investigations attest to neuroprotective effects of the steroid in the brain, surprisingly little is known about the physiological effects of DHEAS on cells of the reproductive system. Here we demonstrate that DHEAS acting on the spermatogenic cell line GC-2 induces a time- and concentration-dependent phosphorylation of c-Src and Erk1/2 and activates the transcription factors activating transforming factor-1 (ATF-1) and cyclic AMP-responsive element binding protein (CREB). These actions are consistent with the non-classical signaling pathway of testosterone and suggest that DHEAS is a pro-androgen that is converted into testosterone in order to exert its biological activity. The fact, however, that steroid sulfatase mRNA was not detected in the GC-2 cells and the clear demonstration of DHEAS-induced activation of Erk1/2, ATF-1 and CREB after silencing the androgen receptor by small interfering RNA (siRNA) clearly contradict this assumption and make it appear unlikely that DHEAS has to be converted in the cytosol into a different steroid in order to activate the kinases and transcription factors mentioned. Instead, it is likely that the DHEAS-induced signaling is mediated through the interaction of the steroid with a membrane-bound G-protein-coupled receptor, since silencing of Guanine nucleotide-binding protein subunit alpha-11 (Gnα11) leads to the abolition of the DHEAS-induced stimulation of Erk1/2, ATF-1, and CREB. The investigation presented here shows a hormone-like activity of DHEAS on a spermatogenic cell line. Since DHEAS is produced in male and female reproductive organs, these findings could help to define new roles for DHEAS in the physiology of reproduction

    Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC

    Get PDF
    The average transverse momentum versus the charged-particle multiplicity NchN_{ch} was measured in p-Pb collisions at a collision energy per nucleon-nucleon pair sNN\sqrt{s_{NN}} = 5.02 TeV and in pp collisions at collision energies of s\sqrt{s} = 0.9, 2.76, and 7 Tev in the kinematic range 0.15 with NchN_{ch} is observed, which is much stronger than that measured in Pb-Pb collisions. For pp collisions, this could be attributed, within a model of hadronizing strings, to multiple-parton interactions and to a final-state color reconnection mechanism. The data in p-Pb and Pb-Pb collisions cannot be described by an incoherent superposition of nucleon-nucleon collisions and pose a challenge to most of the event generators.publishedVersio

    Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at √sNN = 2.76 TeV

    Get PDF
    The first measurement of neutron emission in electromagnetic dissociation of 208Pb nuclei at the LHC is presented. The measurement is performed using the neutron Zero Degree Calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV with neutron emission are σ_single EMD = 187.2±0.2 (stat.) +13.8−12.0 (syst.) b and σ_mutual EMD = 6.2 ± 0.1 (stat.) ±0.4 (syst.) b respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.publishedVersio
    • …
    corecore