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We study the convolution oscillatory singular integral operator 7f = p.v. Q * f,
with Q(x) = e'“™K(x), where g is a real-valued polynomial of a real variable, of
degree d > 2, and K is a Calderon-Zygmund-type kernel. We prove that this
operator extends to an operator that maps the Besov space BY ! into the Hardy-type
space Hi.  © 1998 Academic Press

1. INTRODUCTION

In recent years several results concerning the boundedness of oscillatory
singular integral operators have appeared in the literature. The operator
of interest here is a convolution operator of the form Tf = p.v. Q = f, with
Q(x) = e"19K(x), where ¢ is a real-valued polynomial of a real variable
and K is a Calderon—-Zygmund-type kernel. Similar operators are studied
in [1] and [3].

In [1] the phase function ¢ € C*(R" \ {0}) is real-valued and satisfies

|Deg(x)| < C,lx|" 1! (1.1)

for every multi-index « with |a| < M and x # 0, where M and b are
positive integers, and

IVg(x)l = Clx|"~*. (1.2)
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In this same paper the kernel K: R"\ {0} » R?! is said to be of type
(k, m) if for every x # 0,

IDAK (%) < Cplxl ™71, (1.3)

for every multi-index « with |a| < m, where C, is a constant that depends
on a but not on x. The result in [1], which is of interest to us, is the
following.

THEOREM 1.4. For k =1,2,3,...and p, =n/(n + k), let m > kb + n
and let K be a kernel of type (n, k + 1) near the origin and of type (m, k + 1)
away from the origin. In addition, suppose K satisfies the cancellation condi-
tion pV. [ <. K(x)dx =0, for some &> 0. Then the convolution oscilla-
tory singular integral operator Tf = p.v. Q * fis bounded on Hf, forp, < p <
1, provided q € C*(R" \ {0}) satisfies (1.1) and (1.2), where b > 0, b + 1,
and M > k + 1.

The space H{ of this theorem is the Hardy-type space defined in [5] and
discussed below.

In [3] the phase function g € C*(R" \ {0}) is real-valued and satisfies
conditions (1.1) and (1.2) with M = 2. Furthermore, K is a Calderon-
Zygmund kernel. The result in [3], which is of interest to us, is the
following.

THEOREM 1.5. When n = 1, Tf = p.v. Q) * f extends to a bounded opera-
tor in the space B> if and only if T is a bounded operator on L*(R").

The space B! of this theorem is the Besov space defined in [3] and
discussed below.

In this study we are interested in the convolution oscillatory singular
integral operator

T(x) = pv. [ VK (x =) f(y) . (16)

where g(x) = X¢_, a,x' is a real-valued polynomial of degree d > 2 and
K is a kernel of type (1,2) that satisfies a cancellation condition. The
significant feature of this study is that the phase function in (1.6), the
polynomial ¢, may not satisfy condition (1.2), a condition that is necessary
in the proofs of Theorems 1.4 and 1.5 above. Our main result is the
following.

THEOREM 1.7. Let q(x) = X¢_, ayx' be a real-valued polynomial of
degree d > 2, and suppose K is a kemnel of type (1,2) that satisfies the
cancellation condition pv. [ ., K(x)dx =0, for some &> 0. Then there
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exists a constant C such that

1Tfllug < Cllfll g (1.8)

for every f € BX*, where C is independent of f.

The remainder of this paper is organized as follows. In the next section
we give definitions of the Hardy-type space H} and the Besov space B} .
In Section 3 we present the proof of Theorem 1.7, along with the
statements of three necessary lemmas. We postpone the discussion of the
proofs of these lemmas until Section 4.

Throughout this paper, the letter C will denote a constant, the value of
which may change with each appearance.

2. DEFINITIONS AND NOTATION

In this section we present definitions of the Hardy-type space H; and
the Besov space B!

The Hardy-type space H; was studied first by Han [5] in the setting of
R! and later by Chen and Fan [1] in the setting of R" for n > 1. In this
study we are interested in the setting R™.

If 1 < g <« and s > 0, then a measurable function a: R* — C is called
a (1,1, g, s) atom centered at x, if there exists an interval I(x,, p) C R*,
with center x, and radius p, such that

supp(a) € I(xq, p), (2.1)
lexja(x) de=0  foreveryinteger0 <j <, (2.2)
lall Loy < p*/ 771, (2.3)

and
la'll Loy < p*/ 772, (2.4)

where the derivative is in the distributional sense. For the same values of ¢
and s as above, we define the atomic Hardy-type space, Hj *, as the
collection of all f € S'(R?), the tempered distributions in R, that can be
written as

f= Y Aa, (2.5)

j=1
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where {A}_, satisfies Y7_, Al < and each a; is a (1,1,4,5) atom.
Convergence of (2.5) is in the distributional sense. If we define the norm of
such an f as || fllzger = inf (Z7_; [A;), where the infimum is taken over all
sums (2.5), then H} % becomes a Banach space.

Now suppose that ¢ €.(R?), the Schwartz class of functions in R?,
satisfies [g: @(x) dx = 0. The generalized Lusin function S) is defined as

dydt 1/(b+1)
t2

Se(f)(x) = (fm)lf* 621 (2.6)

for b >0 and f<.2'(RY), where T'(x) ={(y,t) € R2: |x —y| <t} and
o(y) =t"Y%(t'y) for y e R', and t > 0. If s > 0 and ¢ € AR?) satis-
fies supp(¢) C {x € RY: |x| < 1}, 7 1@(xt)|*(dt/t) # O for every x # 0,
and [z x/p(x)dx =0 for every integer 0 <j <s, then we define the
Hardy-type space H; to be the collection of all f<.'(R!) that satisfy
| fllaz = ||S£f||L1(R1) < o, The following theorem can be found in [5].

THEOREM 2.7. Let 1 < g < ands > 0.

(i) Forany (1,1, q, s) atom a, there exists a constant C, independent of
a, such that IISgaIILl(Rl) <C.

(i) Hy=Hy?* and \|fllyres = fllug for every f € Hy.
We define the Besov space Bf’l as in [3]. Suppose 1 <g <o A

measurable function a: R* — C is called a (1, g) Besov atom if there exists
an interval I(x,, p) € R® with center x, and radius p such that

supp(a) € I(x,, p), (2.8)
lall owyy < p¥/ 971, (2.9)
lla'll oy < p*/ 972, (2.10)
la" | Loy < p*973, (2.11)
and
lexfa(x) dc=0 forj=0,1. (2.12)

The Besov space BX! is the collection of all fe.7'(R!) that can be
written as

f= i Aja;, (2.13)

j=1
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where {A}_, satisfies X7_, [A;] < and each a; is a (1,%) Besov atom.
Convergence of (2.13) is in the distributional sense. If we define the norm
of such an f as [|fllzp: = inf (Z7_; [A;]), where the infimum is taken over
all sums (2.13), then B! becomes a Banach space.

3. PROOF OF THEOREM 1.7

To prove (1.8) it is enough to show that
ITalluz = IS2(Ta)ll iy < C (3.1)

for every (1,%) Besov atom, a, where C is independent of a. Indeed,
suppose (3.1) holds and that f € BX'. Let & > 0 be arbitrary and write
f=2X7_1 \a;, where each a; is a (1,0) Besov atom and X7_;[)A; <
| fllger + &. It follows that

NT( )z = ”Sg(Tf)”Ll([Rl) = Sﬁ T( ) )\jaj))
j=1 LYRY
<y |/\j| “Sg(Taj)”Ll(Rl) <C) |)\j| < C(”f”zéﬂ1 + 8),
j=1 j=1

and since & > 0 was arbitrary, (1.8) follows.

Since T is a convolution operator, in proving (3.1) we may and do
assume without loss of generality, that a is a (1, ) Besov atom centered at
the origin. We let I = I(0, p) denote the interval, with radius p and center
at the origin, associated with a as in (2.8).

The idea of the proof of this theorem is to break Ta into pieces and
show that each piece is either a (1,1, 2, s) atom, for a particular value of
s > 0, or is one term of a series that belongs to Hy. To this end we let
¥ € C5(RY) be such that supp(y) € {1/2 < |x| < 2}, ¢ = 0, (1) = 1, and

X7 _.¢(@/x) =1 for every x # 0. For some fixed N > 1, to be deter-
mined in Lemma 3.15 below, we define
n(x)=1- 2 ¢(x),
j=N+1

where (x) = ¢(277~p~x). It follows that supp(n) < {|x| < 2"*%} and
n(x) = 1 for every |x| < 2¥* . We let Q(x) = ¢'YK(x) and write Q as

Q1) = ()X + L (00X = 0(x) + Y (x)

j=N+1 j=N+1
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SO

Ta = (Qq*a) + i (Q;*a). (3.2)

j=N+1

Using arguments similar to those in [1], which are by now well known
and therefore omitted, and the result in [6] concerning the L? bounded-
ness of T, one can easily show that, up to a constant, Q, *a isa(1,1,2,s)
atom, for s = 1, and hence by Theorem 2.7 there exists a constant C,
independent of a, such that

14 * ally: < C. (3.3)

We now consider the terms ()« a for j > N + 1 in (3.2). Because our
phase function, g, is a polynomial, the arguments are more delicate than
those for Q, *a.

Since supp(¢;) < {2/p < |x| < 2/* %} and supp(a) < {lx| < p}, it follows
that

supp(€Q; *a) < {27 p < |x| < 2/ %}. (34)
Using the cancellation properties of a, we see that for [ = 0, 1,

f x'(Q; *a)(x) dx

Rl

= [ e s
14
=4yﬂﬂy)&12%(”(x—yfy“%(x—Y)d“W

I
= & ({0 [, (=Y atx =) deay =0, (35)

In considering the series X7_ ., ; (2, * a) we will find it necessary to treat
separately the (), * a whose supports contain the zeros of g'. To this end
we let

d

a(x) = L’ = ay(x = i) (v = ) - (x = 1),

where w,;, 1 < i < d, are the roots of g. We note that

lg(x)l
x|

M=

[yl

—d
= |x| < ;

i

d .
Y ax
i=0

0
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for every |x| > 1, so

lg(x)l <

o —

i )led

for every |x| > 1. In fact, for 0 </ < d,
ID'q(x)| < C/lx|*"" (3.6)

for every |x| > 1, where C, depends on / and on the coefficients of q.
Along with the upper bound (3.6), we desire a lower bound on g'. To
establish this bound we consider

d
q'(x) = :Zl fapx'™ = day(x = vy)(x = vp) = (X = vy),

where v;, 1 <i <d — 1 are the roots of ¢q'. Let I, =[—2F"), —2%] U
[2%,2%*?p] and suppose Re(y,) € I,.
Note that if x € I,_, U I, U I, 4, then |x — v, > |x]/2. If we let

d-1
Z= U {yelL VL, Ul ;:Re(v) €L} U {0},
i—1

then it follows that for any x & Z,
’ | d| d— l
lg' (x)| = ldeyllx — villx — vyl |x — v, > 2— x| (3.7)

This is the lower bound that we desire. Note that this bound is valid only
on R\ Z.

Ifwedefine B={jeZZn U/}, ,#WandG={(jeZj>=N+
1} \B then for any] € G, the set of good indices, we have Z N {x € R:
2/7% < |x| < 27*%} = 0. For those indices j € G, if x € supp(Q #q) C
{2/"p <zl < 2/*%} and y € supp(a) c{|z] < p}, then 2/"% < |x -yl <
2/%%, since j—2=(j—1)—-1>N-1>0, and it follows that x —
y & Z and hence that

dlay
d-1 d-1
lg'(x —y)I > —Zd,llx—yl = Cylx =yl .
Iy I Iy T I Tieys
i - PN e —
] |
_2fcl+2p _2k+1p _Qkp__2kl—1p .! 2k—|1p 2'!p 2k4|-1p 2kl—2p

FIG. 1. The diadic intervals.
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We now return to our series, which we break into two pieces:

o

Y (Qra)= Y (Yyxa)+ Y (9Q;*a).
j=N+1 jeG JEB
j=N+1

We concentrate first on the terms (), * a for which j € B. For each such
term we obtain

(€ *a)(x)l =‘f eI (2777 (x — y))K(x — y)a(y) dy

yl<p

la(y) ) }
N/ 1 —Jjp—1
= Cf lx — yl dy < (2 P )(2p)||a||Loo([R{ y<C27p

and it follows that
19, * all 2@y < Cp~ /2. (3.8)
Using a similar argument, we obtain
I(Q; % a) 2wy = 192, % @'l 2y < Cp372. (3.9)
In light of (3.4), (3.5), (3.8), and (3.9), we see that, up to a constant, Q;  a

isa(1,1,2,s)atom, with s = 1, for each j € B for which j > N + 1. Since
B contains at most 20 (d — 1) elements, it follows that

Y (xa)| < LI xaly < C, (3.10)
JEB jEB
j=N+1 H}

where C is a constant independent of the atom a.
In light of (3.3) and (3.10), we see that to finish this proof it will suffice
to show that there exists a constant C, independent of a, such that

Y 119« allg < C. (3.11)
jeG

To prove the existence of such a constant we require three lemmas, the
proofs of which are discussed in the final section. The first two of these
lemmas are Lemmas 2.9 and 2.3 in [1], as adapted to our setting. The
results of the third lemma are inequalities (3.4) and (3.5) in [3], as adapted
to our setting.
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LEMMA 3.12.  Suppose 2/~ % < 1. Then there exist constants, C, such that
(Q;#a)(x)| < C(27"%) 27 (3.13)

and
(Q%a) (x)| = C(217%) "27, (3.14)

where the constants depend on the coefficients of the polynomial q.

LEMMA 3.15. Let s be a nonnegative integer less than or equal to 1, and
suppose a is a measurable function, supported on the interval I = (—p, p)
and satisfying the conditions

(i) [pr x'a(x) dx = O for every integer | such that 0 <[ <s,
() lallpwy < p7t
(i) Na'll =gy < p~ 2, where the derivative is in the distributional sense.

Let

e 10 Va(y)y'dy|,

A]( p!a) = Sup
Rl

2/ p<lxl<2H

where | < s and q is a polynomial of degree d > 2. Then for each j € Z for
which 27~ % > 1,

Ai(p,a) < Cp?ti2/=Db, (3.16)

where C is independent of a and j. Furthermore, there exists an N € N such
that forj > N, 2'"% > 1, and forj & B,

o —d .
A;(p,a) <C(2p) p'27, (3.17)

where N is independent of a, and C is independent of a and j.

LEMMA 3.18. Forj € G such that 2'~% > 1, and any measurable func-
tion, a, supported in the interval I = (— p, p) and satisfying the conditions of
Lemma 3.15,

19,  all =@ty < C(29p) (27 + min{ p927@=D, p=dp=id=1}) (3.19)
and

(9, a) ll-gy < C(27p) " p 1277 + min{ pi2itd=D, p=dg-itd-1}).
(3.20)
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Returning to the proof of (3.11), we break each term of the series into
several pieces as follows:

19, < allug = [ ][ f|X7y|<t|(go,*Qj*a)(y)|dyt—2 dx
2p
- ld
[x|<2/*% f ‘/x y\<t y
j+3 dt
n | /‘2 pj’ [ |dy—2 dx
lx|<2/*% |/2p [x—yl<t t
+ [« | dy—|dx
lx|<2/*% ‘[2’+3 jl;z yl<t ytz
o dt
+ e | dy— | dx
lx|>2/*% '/;j”p'/l‘x—ykt ytz
203, dt
¥ oo | dy = | d
lx|>2/"% '/O '/IAx—y|<t ytz

L+ L+, +1,+1.

By the support condition (3.4) for ;= a, we obtain I; = 0. Using the
cancellation property of ¢ we obtain for 7, and I,

L[k

le%()’ - Z)((Qj *a)(z)

[x—yl<t
dt
—(Qj*a)(y))dz dyt—zdx
< (€, a)'ll=w C, 2°p2
and
® 1 (y—z
I, = _
: '/\-x|<2”5 '/;”3 ‘/l‘x yl<t '/[Rl( t ¢( t )
1 dt
——qo( ))(Q *a)(z) dz|dy— dx

< ||Qj * a||L°°(R1)2]+3 e’ ||L1(|R1) f f
lxl<2/*% 727+ % Jix - y|<t

= C¢2jp||Qj * a||L*(R1)-
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Using the cancellation property of ), *a we bound I, as
o y—z y
() =l7)
) Ix\>2f*5pfzf*3p \ /2 A v

dt
XI(Qj xa)(z)l dzdyt—3 dx

x—yl<t 2 h<|z|<2™h

dt
< (27) e @, * all < dy—7 dx
277p) eIyl L*RY) |x|>2j+5p’/|‘x\/4'/|’x7y|<l yt4
< C(2'p)IIQ; = all L=y,
Finally, we bound I, as
20+ (y—Z)dz dt
L, <||Q: *all =g —dy— dx
» < 19+ all = )[x‘szﬁs,,fzp /‘HM/W ol — || ¥

< Cll@ll w2 * all =@y (27p)IN(2742)
= C(2%p)IN(27* )11, * all @)

Using the bounds for [;, 1 <i <5, Lemma 3.12, and Lemma 3.18, we
obtain

Y Q= allyy
jEG

Y NQxallyy + X 1Q; xally;

JjEG JEG
2/7%>1 2/ %<1
<C Y (2jp2||(Qj * a)'“L““(Rl) + 2jP||Qj * all =y
2/ %>1

+(2jp)|n(2j+2)||9j*a“L"([Rl))
+C Z (ZjPZH(Qj * Cl),”Lx(Rl) + 2jp||Qj * all - w)

2 %<1

+(2p)In(27 )1, * all =y )

IA

CY (27 +277In(27*2) + min{ p?2/¢=Y, p=dp=id-1}

j=2

+In(27*2)min{ p?2/d=D, p=dp=id=D})
+CY (279 + 27 + 27In(27*2))

j=2
<C,,
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where C, depends on d but not on p. This proves (3.11) and hence our
theorem. |

4. PROOFS OF LEMMAS

In this section we discuss the proofs of Lemmas 3.12 and 3.15. The proof
of Lemma 3.18 is quite similar to the proofs of statements (3.4) and (3.5) in
[3] so we omit it.

Proof of Lemma 3.12. Recall that

(@ a)(x) = [ (@7 p (k= ))K(x = y)a(y) dy

lyl<p
and supp(€; * a) € {2/"p < |x| < 27" p}. If we let
K(z) = ey (277 Y (2))K(2),
then since K is a kernel of type (1, 2), we obtain
ID'R(z)l <C(27%) '

for0 </ <2and 2/"% < |z| < 2/*%. Note that the constant, C, depends
on the coefficients of the polynomial, q.
Using the cancellation condition of a,

(@)l =|[  (R(x=9) = RE)ar) &
< C(Zj_zp)_zpznanﬁ(ﬂﬁ < C(z/—zp)—lz—j,
and similarly,

(Q,%a) (x)l < C(277 %) 277,

where the constants in both expressions depend on the polynomial, ¢g. |
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Proof of Lemma 3.15.  Using inequality (3.6) and the cancellation prop-
erty of a, for any x satisfying 2/~ % < |x| < 2/*%, we obtain

‘f eiQ(x’Y)a(y)y’dy < f lei4(r=) — 10| |g( y)| |y|l dy
R* lyl<p

= [ la'(x = Oy la(y)ldy
lyl<p

<C } Ix — &1yl Ha(y)l dy
yi<p

< Cpi+iid-n

from which (3.16) follows.

To prove (3.17) we fix 2/~ < |x| < 2/*% and consider |y| < p. Note
that 2" <|x —y| < 2/"% so for j & B we have x,x —y ¢ Z and by
(3.7) it follows that |g'(x)| > Cdl)cld_l and |g'(x — )l > C,lx —yld_l.
Letting ¢'(x) = q¢'(x —y) + yq"(x — &), where | €| < p we have

lg'(x =)l > 1q'(x)| = p sup lg"(x — &)l
[él<p

> Clx["! = psup (Clx — &]7?)
l[él<p

> C(Zjilp)d_1 — pC(ZjMp)d_2
= C(2p)" (1 - Cc27).
So, there exists an N > 1 such that for every j > N,
. od—
lg'(x =)l = C(2%p)"

for every x and y satisfying 2/~ < |x| < 2/"% and |y| < p. Integrating by
parts we obtain

fR €1 a(y)y' dy

d
f — (ef10)
R

1
a(y)y' dy
v dy )()

q'(x—y
1

= _if eiq(xfy)i Ia(i dy
yl<p dy\q'(x—y)

d 1
—i ig(x=y)
1/‘ e [

I e

a'(y)y' Iy ta(y)
g'(x=y) q'(x=y)|
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It follows that
‘f e Va(y)y! dy‘
Rl

<[ (la'Gx=»)2lg" (x = y)lla() Iyl

lyl<p

+lg'(x = )T (la' (D) yl" + Ha(y)l1yI'™")) dy

-2(d-1 d-2
< [ (Cle =yl L =y lall oy pf
lyl<p

+Clx = yI™ " (lla'll ey p! + Ulall sy p' 1)) dy
< C(2/p) “27p,

which proves (3.17). 1

ACKNOWLEDGMENT

This study was part of the author’s Ph.D. dissertation, which was written under the
direction of Professor Alberto Torchinsky.

REFERENCES

1. L. K. Chen and D. Fan, Oscillatory kernels in certain Hardy-type spaces, Studia Math. 111
(1994), 195-206.
2. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull.
Amer. Math. Soc. 83 (1977), 99-157.
. D. Fan, An oscillatory integral in BY*(R"), J. Math. Anal. Appl. 187 (1994), 986—1002.
. P. J. Gloor, “Oscillatory Singular Integral Operators on Hardy Spaces,” Ph.D. dissertation,
Indiana University, Bloomington, IN, 1996.
5. Y. Han, “Certain Hardy-Type Spaces,” Ph.D. dissertation, Washington University, St.
Louis, MO, 1984.
6. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, 1.
Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.

B~ W



	1. INTRODUCTION
	2. DEFINITIONS AND NOTATION
	3. PROOF OF THEOREM 1.7
	FIG. 1.

	4. PROOFS OF LEMMAS
	ACKNOWLEDGMENT
	REFERENCES

