
The ALICE Level 0 Pixel Trigger Driver Layer

Cesar Torcato de Matos a,b Alex Klugea,Costanza Cavicchiolia, Gianluca Aglieri Rinellaa, Giuseppe
 Marangioc, Fernando Ribeirob, Michel Morela

a CERN, 1211 Geneva 23, Switzerland
b University of Minho, Campus de Azurem, 4800 Guimaraes , Portugal

cINFN Sezione di Bari, Italy

cesar.matos@cern.ch

Abstract
The ALICE[1] Silicon Pixel Detector (SPD) [2] includes

120 detector modules each containing 10 pixel chips. Each
pixel chip is capable of generating a FastOR signal indicating
the presence of at least one pixel hit in the corresponding
8192 pixel matrix.

The Pixel Trigger (PIT) [3][4] System has been
implemented to process the 1200 Fast-Or signals from the
SPD and to provide an input signal to the ALICE Central
Trigger Processor (CTP)[5] for the fastest (Level 0) trigger
decision within a latency of 800 ns.

Working as a decision criteria for ALICE, the data flow
need to be monitored carefully and status information needs to
be made available. Therefore the PIT control system required
an accurate design of hardware and software solutions to
implement a coordinated operation of the PIT and the ALICE
systems to which it interfaces.

A driver layer was developed under stringent requirements
of robustness and reusability. It qualifies as a general purpose
hardware driver for electronic systems. It uses the ALICE
Digital Data Link (DDL) [6] front end board (SIU) to
communicate with the PIT hardware.

We present here the design, and the implementation of the
Pixel Trigger Front End Device (FED) Server [7].

I. The Pixel Trigger Control Hardware

The pixel trigger hardware is composed of a main
processing board where 10 mezzanine cards (Optin boards)
are plugged. The Optin boards are capable of reading the
output of 12 SPD detector modules (Optical Links).

A PCI inspired control bus with transaction
acknowledgement and late parity check is used to
communicate between all on-board instances.

A DDL was included as the communication medium for
the control interface. Commands are received and status
information is read back via a bridge between this device and
the internal control bus.

A second FPGA on the processing board is dedicated to
the slow control, to the system interfaces and to the
reconfiguration of the main processing FPGA. Status
monitoring and control is implemented via registers in all the
programmable devices available in the hardware. Remote
programming of the processing FPGA is foreseen: the
programming file for a given processing algorithm will be
downloaded via the DDL link and the control FPGA to a local

SRAM memory and then transferred to the Flash PROM
connected to the processing FPGA.

II. The PIT Control System

The Pixel Trigger control system was designed to operate
and control the pixel trigger hardware. It takes appropriate
corrective actions to maintain the triggering stability and
ensure the data quality.

It is composed of two computers: a Linux PC to act as the
driver layer of the system using the ALICE Data Acquisition
(DAQ) standard hardware equipped with a SIU/DDL module
to interface with the PIT electronics, a Windows PC which is
the supervision layer of the system running CERN’s standard
Supervisory Control and Data Acquisition (SCADA)
framework, PVSS II [8].

The PIT control system is part of the ALICE Detector
Control System (DCS) [9]. The architecture of the ALICE on-
line software is strictly hierarchical. The main systems: DCS,
DAQ, CTP and High Level Trigger (HLT) work as
autonomous applications. At the highest level of this hierarchy
is the Experimental Control System (ECS) [10], which
controls all on-line applications.

The global ALICE DCS is partitioned in sub-detectors that
are seen as independent control systems integrated in a
hierarchical Finite State Machine (FSM) [11].

III. The PIT FED Server

The Pixel trigger FED Server is a software developed to
act as the driver layer of the system. It uses a SIU/DDL to

Figure 1: The model of Alice Detector Control Systems.
Partitioning is based on sub-detectors. The ECS is the highest
level instance with the control of all online applications.

PIT DCS SPD DCS

 DCS

ECS

DAQ CTP HLT

...

... ...

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55626118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

interface with the PIT electronics and it is capable of
publishing status information and receiving commands from
several computers over the network.

It was developed in C++ to provide an interface to all
hardware features and to be the first layer of control of the
system displaying the overall trigger status. It can freely
access the 19 bit register address space in the hardware
monitoring the status registers of the 120 optical links and
1200 FastOR counts and publishes them as DIM services for
the supervision PVSS layer and Finite State Machine (FSM)
for trigger quality calculation and FastOR tuning.

In addiction it publishes status services for alarm
conditions, provides hardware debugging tools and automatic
tests on the system ensuring the data quality.

A. Main Libraries Used

 The PIT FED server was developed on top of CERN
standard libraries using:

DIM [12]: Developed at CERN stands for Distributed
Information Management System. It provides a network
transparent inter-process communication layer. It is used by
the PIT FED to publish status information and to receive
commands from other computers through the network.

OCCI [13]: Oracle C++ Call Interface (OCCI) is a high-
performance and comprehensive object-oriented API to access
the Oracle databases. It is used by the FED to access the DCS
configuration database.

Log4cpp [14]: Is a library of C++ classes for flexible
logging to files, syslog, IDSA and other destinations. It is
modelled after the Log4j Java library, profiting of their API as
much as possible. It is used for the extensive logging that
exists in all operations of the FED.

Fec2Rorc [15]: Developed at CERN, part of the standard
ALICE Data Acquisition and Test Environment (DATE)
distribution, is a thin wrapper over the RORC driver libraries
and is used by the lower level of the software to access the
hardware using the DDL/SIU interface.

Figure 2 shows the library organization.

IV. The FED Server Command Structure

The PIT system was designed to receive commands from
several ALICE sub-systems. There are 3 instances currently
sending commands to the PIT FED server and relying on its
status information: the PIT supervision layer for the control
and operation of the system, the SPD FED server [16] in order
to read status information for FastOR DAC calibration scans
and the CTP in order to configure the PIT outputs (TINDET
partition [17]). It can perform a wide range of operations: the
execution status of these commands have to be available to all
of the instances it interfaces with.

So for the PIT FED a command structure was devised to
be flexible, capable of receiving a variable number of
arguments, to accurately display the status of the execution of
all commands and to be capable of dealing with the fact that
several instances can send commands at the same time.

A command channel in the PIT FED is composed of a
DIM command and 4 status informations brought through
DIM services:

● Command: DIM command which is a white space
separated string containing the command to be
executed followed by all its parameters “command
arg1 arg2..argN” ex: “write_register 0x18000
0xDEADBEEF”

● Command Status: DIM service with a string
publishing the execution status of the command,
possible values are: “FINISHED”, “EXECUTING”,
“FAILED”

● Command Return: DIM service, an integer
containing the return value of the command if any. If
the command would be reading a register this service
would contain, after finishing the command, the
actual register value.

● Command ID: DIM service integer containing an
unique id for the current command being executed,
useful if several instances send commands at the
same time

V. List Of Published Services

Connecting the PIT hardware to the rest of the world the
PIT FED server has to work also as one information hub of
the system.

Counters and status registers that are written by the PIT
hardware are made available by issuing commands to the PIT
FED but data that are relevant to the trigger quality and
overall stability of the system need to be constantly monitored
and to be forwarded through DIM services as PVSS
datapoints that will be used by the supervision layer Finite
State Machine (FSM). This is done by monitoring 2 sets of
data: status of the links and status of the outputs.

A. Status of the links

There are 3 DIM services per optical link (link required,
link status, link locked), making a total of 360 services. The
data of these services are refreshed continuously from two set
of registers in the Optin Board address space: the link status
registers and the link settings register. There is one settings
and one status register per optical link (120) in the system.

Figure 2: PIT FED Libraries diagram:
Fec2Rorc is used to communicate with the
DLL, Log4Cpp for logging, OCCI to
interface with the configuration database and
DIM to communicate with other software
over the network.

Fec2Rorc

DIM

Log4Cpp

OCCI

Pixel
Trigger

Loggers

PVSS

Configuration
database

FED
SERVER

CTP

DDL

Ethernet

They are contained inside the Optin board address space.
Registers 21 to 32 contain the link status registers and 33 to
44 the settings registers of the 12 optical links of the
corresponding Optin board. Figure 3 and 4 show the format of
these registers.

Link Required: integer service, 10 bits used for displaying
which of the 10 FastOR channels from a link are being used in
the trigger logic. It is read from the 10 least significant bits of
the settings register, the mask bits, bits 0 to 9, one per FastOR
chip. If one bit is enabled it means that the corresponding
pixel chip will be excluded from the trigger logic. If all pixel
chips are disabled the link is not required.

Link Locked: determines if the internal optical receiver is
locked and getting a valid input data stream. It is read from
the least significant bit, from the link status register that is
forwarded by the deserializer device connected to the optical
link receiver in the hardware. If a link is required by the
trigger logic and there is no valid input data stream the data
taking is stopped.

Link Error: determines if the rates of the FastOR of this
channel are within the correct thresholds. In the hardware
there are of 40 read/write registers where the maximum and
minimum FastOR rates can be set: 20 for the maximum and
minimum rates for pixels chips belonging to the inner layer of
the SPD and 20 for the maximum and minimum rates for
chips belonging to the outer layer. The Optin Board will then
automatically count the incoming FastOR signals for a default
period of one second and if at least one of the 10 FastOR
channels of one link gets out of the thresholds the bit number
2 of the status register will be enabled stating that there is a
configuration problem in this SPD halfstave (noise or
inefficiency).

B. Status of the outputs

The same logic is applied to the outputs of the system.
Status registers and counters of the outputs are read from the
processing FPGA address space to the higher level
supervision layer in order to detect problems and stop the run
if required.

There are 10 services indicating the output mode to the
CTP visualized as strings ("normal", "random", "toggle" or
"signature"). The different modes are used for debugging of
the CTP: normal is the normal triggering mode, in random
mode the corresponding output will send a random bit pattern,
in toggle mode the output will switch polarity on every trigger
and in signature mode the output will send a pre-defined

pattern on every trigger. During run mode all outputs have to
be in “normal” mode.

10 integer services indicating the current trigger rate of the
outputs are foreseen, this will be forwarded to the supervision
layer in order to detect abnormalities in the trigger algorithms.

C. FastOR Counters

One big service displays the FastOR count of all chips in
the system (1200). Used by the SPD FED and refreshed on
demand during FastOR Optimization DAC scans. This service
is published due to constraints in performance during FastOR
calibration scans. The SPD FED will loop over pixel chip
FastOR DACS, set test pulse matrices, send triggers and
measure the FastOR rates. Due to the large number of possible
steps of this scan (minimum of 4*8 bit DACs, 3 test pulse
matrices : 3*2564 =12.9*109). The SPD FED will send a
command to start the measurements on the PIT FED and
retrieve the data in one big array instead of issuing several
read counters commands.

VI. Command Line Interface

Using the high level architecture of the FED server allows
sending commands directly through a command line interface.
This feature is managed by the pit_keyboard class. It uses the
“termios.h” and “poll.h” unix C libraries to scan from the
keyboard input without stopping the execution loop of the
FED server. It is able to perform normal tasks and commands
from other sources at the same time while the operator types
commands in the PIT FED console.

The command structure is the same as for the DIM
commands, feedback of the execution status is available by
following one of the log channels of the FED.

The command line interface was extremely useful during
the early commissioning phase for testing the hardware
features and to perform bit error rate measurements on the
system.

VII. The PIT FED Server Implementation

In order to address problems like the long term
maintenance, robustness and scalability for the PIT FED
server a pure C++ object-oriented paradigm modelling parts
of the hardware was chosen. There was a heavy investment in
encapsulation where classes provide interfaces hiding
hardware related data while providing high level
functionalities. C++ exceptions for error management and the
Standard Template Library (STL) [18] whenever possible was
used. This proved to be an effective way of managing
complexity increasing code robustness without hindering
performance.

Figure 4: Link Status register
format.

Lin
k
 Lo

ck
e
d

N
o
t u

se
d

Lin
k
 E

rro
r

Lin
k
 p

h
a
se

 0
Lin

k
 P

h
a
se

 1

N
o
t U

se
d

0124,331..5

Link Status register
(Read Only)

Figure 3: Link Settings register format.

F
O

 M
a
sk

 0
..

F
o
M

a
sk

 9

U
D

 F
O

 <
0
>

..
U

D
 F

O
 <

9
>

N
o
t U

se
d

Lin
k
 D

e
la

y
 0

Lin
k
 D

e
la

y
 1

U
D

F
 E

n
a
b
le

9..019..1029..2131,30 20

Link Settings register
(Read/Write)

A. Main Classes Developed

1. PIT Communication Class

The pit_comm class is positioned at the lower level of the
class architecture. It is used to manage the communication
through the DDL. It is a singleton [19] meaning that there is
only one instance of the class in the project and its used by
almost all other classes in this architecture. It is an object
oriented wrapper around Fec2Rorc functions. Status bits are
read automatically in all transactions. All data sent to the
hardware are read back and verified. Exceptions are thrown if
any error is detected.

The PIT communication class summary:
● manages the communication with the hardware
● a wrapper around the Fec2Rorc functions
● checks status bits automatically
● write followed by a read for verification
● one instance used by all hardware classes (singleton)
● throws exceptions on error detection

2. PIT Configuration Class

The pit_configuration class is designed to supply
configuration data to all other classes. It manages the access to
the oracle database or to configuration files. It is also a
singleton having only one instance of this classe in the project
supplying services to several other instances/classes.

The PIT configuration class summary:
● manages access to database or to configuration files
● one instance used by all classes (singleton)

3. PIT Driver Top Level Class

The pit_driver class is the higher level instance of all
hardware related classes and contains collections of all other
driver classes (processing FPGA, control FPGA, Optin boards
etc.). It is capable of parsing the commands received from the
DIM or from the command line interface and forwards them
to the correct instances. This includes bit error rate tests,
measurement and realignment of all phases, finding noisy

FastOR channels and management of all global operations of
the software.

The PIT Driver top level class summary:
● higher instance of the driver class
● has collections of all other driver classes (processing

FPGA, control FPGA, Optin boards classes)
● manages commands coming from the different

instances
● performs global operations in the system

4. Hardware modelling classes

The pit_driver_ProcFPGA, pit_driver_ControlFpga,

pit_driver_OptinBoard, pit_driver_Optical_link and
pit_driver_FoChannel are classes that were designed to model
the existing hardware devices with the same name. They
provide high level methods to access functionalities of the
devices they represent hiding the hardware related
implementation. They are self contained: they include inside
them the means for communicating with the hardware and all
memory addresses and information needed to keep track of
the status of the device. They can publish status information
via DIM services if needed. They are safe, they verify the data
and throw exceptions if needed.

For instance the pit_driver_ProcFPGA class offers
methods to fully configure the output algorithms of the
system, the pit_driver_Optical_link class displays when a link
is locked, is required or if it is in error.

PIT driver hardware classes summary:
● they model existing hardware devices with the same

name
● they provide high level functionalities hiding

memory addresses, registers and hardware related
issues

● they are self contained
● they are included inside the pit_driver class
● they are safe: they verify the data and throw

exceptions

B. Extension of Existing Frameworks

There was an extension of existing frameworks namely in
Log4Cpp::DimAppender and
run_time_error::pit_comm_error classes.

In the Log4Cpp framework a logger class can have several
appenders and in this way it can write logging information to
several destinations: log files, databases or even system
specific logs ex: windows event log.

Log4Cpp::DimAppender is an extension of the generic
Log4cpp::Appender. It was created through inheritance from
the Log4cpp::FormatedAppender class. It publishes logging
information to the higher instances that connect to the driver
layer through DIM. This framework provides several priority
levels for each log message (fatal, error, warning, info, debug
etc.) and each appender can be configured to write messages
only above a certain level. In that way the driver layer can be
configured to be in debug level for the FileAppender object.
Then all log messages are written to file, or to be in warning

Figure 5: PIT FED class structure. Global pit_driver class
containing collections of other driver classes. pit_comm and
pit_configuration classes as singletons used by all other classes

pit_driver

pit_driver
OptinBoard

pit_driver
OptinBoard

pit_driver
OptinBoard

pit_driver
OptinBoard

pit_driver
OptinBoard

pit_driver
OptcalLink

pit_driver
OptinBoard

pit_driver
OptinBoard

pit_driver
FOChannelpit_drive

ProcFPGA

pit_driver
ControFPGA

x12

x10

x10

pit_Comm pit_Configuration pit_Log

level for the DimAppender object, displaying only warnings
or errors to the operator in the supervision layer.

C. Command Parsing

The pit_driver class was designed to have a common path
for the parsing of all commands from any source: the
command line interface, DIM commands from the SPD FED
server, DIM commands from the supervision layer etc. Like
that a standard way of managing all commands with logging
information and error handling can be created.

 It uses only C++ formatted data input/output mechanisms
relying in the istream and ostream inherited classes operators
“>>” and “<<” so there is no possibility of buffer overruns
while using sscanf or sprintf, increasing the stability and
safety of the system.

The commands are seen as “white space” separated strings
with a command name and a variable number or arguments.
Furthermore the way of identifying instances in the hardware
is done only by SPD coordinates: sector, side, channel and not
by hardware coordinates, Optin number, channel. This makes
the commands more easy to remember and more user friendly.

D. Error Handling

The error handling is a critical part of the development of
any project. This software makes an extensive use of C++
exceptions for error handling. A special pit_comm_error class
which is a extension of the run_time_error exception was
developed. It is used by the system for special error handling
of communication errors through the DDL. It allows to
automatically reset the SIU on certain types of errors.

The verification of the data and the throwing of exceptions
in case of errors was left to the lower level classes.

This increases:
● encapsulation: permits a bigger level of abstraction,

the higher level instances classes do not need to be
aware of the low level implementation of the system

● software flexibility: is easier to replace the lower
level classes by other classes

● software scalability: is easy to add new kinds of
errors after the initial design of the system

● safety: all errors will be reported and saved the same
way. Even some lower level system errors included
automatically by the compiler can be caught this way

E. Documentation Generating Tools

During the development of this software an automatic
documentation generating tool called Doxygen [20] was used.

Doxygen is a documentation system for several languages
including: C++, C, PVSS control scripts, VHDL, Python,
Ruby and many more. It is used by a large number of projects,
it can easily be integrated in many Integrated Development
Environments (IDE) for instance eclipse. It can generate on-
line documentation in HTML, MS-Word rich text format
documents, Latex, compressed HTML, PostScript, PDF and
Unix man pages. The documentation is extracted directly from
the source files through specially defined comments and also
by the code structure displaying the relationship between the

various elements, dependency graphs, inheritance diagrams
and collaboration diagrams which are all generated
automatically.

This proved to be very useful to quickly find the way in
large source distributions and increased good practices in
commenting code and consistence in documentation.

VIII. Conclusions

The PIT FED server was integrated into ALICE DCS and
is in stable production phase. It has been running stably
without any crash for several months and it performes already
many of the high level functions required. In particular the bit
error rate measurements on the hardware and the automatic
finding of noisy FastOR channels were extremely useful
during the early commissioning phase as well as the command
line interface.

The highly modular high level class structure proved to
increase scalability and robustness, to reduce maintenance
issues and does not hinder the performance of the system.

Automatic documentation tools and modern integrated
development environments were used during the development
phase.

The PIT FED successfully maps all PIT hardware features
while publishing the status information for FastOR tuning. It
calculates the trigger quality and provides the higher level
FSM information to recognize errors conditions.

IX. References

[1] The ALICE Collaboration, K. Aamodt et al., The ALICE
Experiment at the CERN LHC:
2008_JINST_3_S08002.

[2] P. Riedler et al., Overview and status of the ALICE silicon
pixel detector:
Proceedings of the Pixel 2005 Conference, Bonn, Germany.

[3] G. Aglieri Rinella et al., The Level 0 Pixel Trigger system
for the ALICE experiment:
2007 JINST 2 P0100

[4]Aglieri Rinella Gianluca et al., The Level 0 Pixel Trigger
System for the ALICE Silicon Pixel Detector:
implementation, testing and commissioning.
TWEPP-08 16 Sep 2008

[5] ALICE Collaboration, Technical design report, trigger,
data acquisition, high level trigger, control system:
CERN-LHCC-2003-062, ALICE TDR 010, 7 January 2004.

[6] CERN ECP/ALD, RMKI RFFO, ALICE detector data
link user requirements document:
Alice Internal Note, ALICE-INT-1996-042.

[7] Peter Chochula, Proposal for ALICE Front-end and
Readout Electronics Monitoring and Configuration:
Alice DCS Development Note, Jan 14, 2003
http://alicedcs.web.cern.ch/alicedcs/Documents/FEEConfig.p
df

http://indicosearch.cern.ch/search?f=author&p=Aglieri Rinella Gianluca&ln=en

[8] ETM, PVSS:
http://www.etm.at/index_e.asp?id=2&m0id=6

[9] ALICE DCS:
http://alicedcs.web.cern.ch/alicedcs/

[10] ALICE Experiment Control System – ECS:
http://alice-ecs.web.cern.ch/alice-ecs/

[11] DCS Integration - FSM
http://alicedcs.web.cern.ch/AliceDCS/IntegrationDCS/Integra
tionDCS.html

[12]Clara Gaspar, DIM;
http://dim.web.cern.ch/dim/

[13] OCCI, Oracle C++ Call Interface:
http://www.oracle.com/technology/tech/oci/occi/index.html

[14] Log4Cpp:
http://log4cpp.sourceforge.net/

[15] Rob Aberystwyth, Fec2Rorc:
http://www.brokenpipe.co.uk/fec2rorc.html

[16]Ivan Amos Cali,The ALICE Silicon Pixel Detector
Control and Calibration Systems:
CERN-THESIS-2008-038

[17]Franco Carena, TINDET Partition:
Private Communication Dec-2006

[18]Standard Template Library Programmer's Guide:
http://www.sgi.com/tech/stl/

[19] Addison-Wesley,Design Patterns: Elements of Reusable
Object-Oriented Software

[20]Doxygen:
http://www.stack.nl/~dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/
http://www.brokenpipe.co.uk/fec2rorc.html
http://log4cpp.sourceforge.net/
http://www.oracle.com/technology/tech/oci/occi/index.html
http://dim.web.cern.ch/dim/
http://alicedcs.web.cern.ch/alicedcs/
http://www.etm.at/index_e.asp?id=2&m0id=6

