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Abstract
The ALICE[1] Silicon Pixel Detector (SPD) [2] includes 

120 detector  modules each containing 10 pixel chips.  Each 
pixel chip is capable of generating a FastOR signal indicating 
the  presence  of  at  least  one  pixel  hit  in  the  corresponding 
8192 pixel matrix.

The  Pixel  Trigger  (PIT)  [3][4]  System  has  been 
implemented  to  process  the  1200 Fast-Or  signals  from the 
SPD and to  provide  an input  signal  to  the  ALICE Central 
Trigger Processor (CTP)[5] for the fastest (Level 0) trigger 
decision within a latency of 800 ns.

Working as a decision criteria for ALICE, the data flow 
need to be monitored carefully and status information needs to 
be made available. Therefore the PIT control system required 
an  accurate  design  of  hardware  and  software  solutions  to 
implement a coordinated operation of the PIT and the ALICE 
systems to which it interfaces.

A driver layer was developed under stringent requirements 
of robustness and reusability. It qualifies as a general purpose 
hardware  driver  for  electronic  systems.  It  uses  the  ALICE 
Digital  Data  Link  (DDL)  [6]  front  end  board  (SIU)  to 
communicate with the PIT hardware. 

We present here the design, and the implementation of the 
Pixel Trigger Front End Device (FED) Server [7]. 

I. The Pixel Trigger Control Hardware

The  pixel  trigger  hardware  is  composed  of  a  main 
processing board where  10 mezzanine cards (Optin boards) 
are  plugged.  The  Optin  boards  are  capable  of  reading  the 
output of 12 SPD detector modules (Optical Links).

A  PCI  inspired  control  bus  with  transaction 
acknowledgement  and  late  parity  check  is  used  to 
communicate between all on-board instances.

A DDL was included as the communication medium for 
the  control  interface.  Commands  are  received  and  status 
information is read back via a bridge between this device and 
the internal control bus. 

A second FPGA on the processing board is dedicated to 
the  slow  control,  to  the  system  interfaces  and  to  the 
reconfiguration  of  the  main  processing  FPGA.  Status 
monitoring and control is implemented via registers in all the 
programmable  devices  available  in  the  hardware.  Remote 
programming  of  the  processing  FPGA  is  foreseen:  the 
programming  file  for  a  given  processing  algorithm will  be 
downloaded via the DDL link and the control FPGA to a local 

SRAM  memory  and  then  transferred  to  the  Flash  PROM 
connected to the processing FPGA.

II. The PIT Control System

The Pixel Trigger control system was designed to operate 
and  control  the  pixel  trigger  hardware.  It  takes  appropriate 
corrective  actions  to  maintain  the  triggering  stability  and 
ensure the data quality.

It is composed of two computers: a Linux PC to act as the 
driver layer of the system using the ALICE Data Acquisition 
(DAQ) standard hardware equipped with a SIU/DDL module 
to interface with the PIT electronics, a Windows PC which is 
the supervision layer of the system running CERN’s standard 
Supervisory  Control  and  Data  Acquisition  (SCADA) 
framework, PVSS II [8].

The  PIT  control  system  is  part  of  the  ALICE  Detector 
Control System (DCS) [9]. The architecture of the ALICE on-
line software is strictly hierarchical. The main systems: DCS, 
DAQ,  CTP  and  High  Level  Trigger  (HLT)  work  as 
autonomous applications. At the highest level of this hierarchy 
is  the  Experimental  Control  System  (ECS)  [10],  which 
controls all on-line applications.

The global ALICE DCS is partitioned in sub-detectors that 
are  seen  as  independent  control  systems  integrated  in  a 
hierarchical Finite State Machine (FSM) [11].

III. The PIT FED Server

The Pixel trigger FED Server is a software developed to 
act as the driver layer of the system. It uses a SIU/DDL to 

Figure  1:  The  model  of  Alice  Detector  Control  Systems. 
Partitioning is based on sub-detectors. The ECS is the highest 
level instance with the control of all online applications.
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interface  with  the  PIT  electronics  and  it  is  capable  of 
publishing status information and receiving commands from 
several computers over the network.

It  was  developed  in  C++ to  provide  an  interface  to  all 
hardware features and to be the first layer of control of the 
system  displaying  the  overall  trigger  status.  It  can  freely 
access  the  19  bit  register  address  space  in  the  hardware 
monitoring the status  registers  of  the 120 optical  links  and 
1200 FastOR counts and publishes them as DIM services for 
the supervision PVSS layer and Finite State Machine (FSM) 
for trigger quality calculation and FastOR tuning.

In  addiction  it  publishes  status  services  for  alarm 
conditions, provides hardware debugging tools and automatic 
tests on the system ensuring the data quality.

A. Main Libraries Used

 The  PIT  FED server  was  developed  on  top  of  CERN 
standard libraries using: 

DIM  [12]: Developed  at  CERN  stands  for  Distributed 
Information  Management  System. It  provides  a  network 
transparent inter-process communication layer. It  is used by 
the  PIT  FED  to  publish  status  information  and  to  receive 
commands from other computers through the network.

OCCI [13]: Oracle C++ Call Interface (OCCI) is a high-
performance and comprehensive object-oriented API to access 
the Oracle databases. It is used by the FED to access the DCS 
configuration database.

Log4cpp  [14]: Is  a  library  of  C++  classes  for  flexible 
logging  to  files,  syslog,  IDSA and  other  destinations.  It  is 
modelled after the Log4j Java library, profiting of their API as 
much as  possible.  It  is  used  for  the  extensive  logging  that 
exists in all operations of the FED. 

Fec2Rorc [15]: Developed at CERN, part of the standard 
ALICE  Data  Acquisition  and  Test  Environment  (DATE) 
distribution, is a thin wrapper over the RORC driver libraries 
and is used by the lower level of the software to access the 
hardware using the DDL/SIU interface.

Figure 2 shows the library organization.

IV. The FED Server Command Structure

The PIT system was designed to receive commands from 
several ALICE sub-systems.  There are 3 instances currently 
sending commands to the PIT FED server and relying on its 
status information: the PIT supervision layer for the control 
and operation of the system, the SPD FED server [16] in order 
to read status information for FastOR DAC calibration scans 
and the CTP in order to configure the PIT outputs (TINDET 
partition [17]). It can perform a wide range of operations: the 
execution status of these commands have to be available to all 
of the instances it interfaces with. 

So for the PIT FED a command structure was devised to 
be  flexible, capable  of  receiving  a  variable  number  of 
arguments, to accurately display the status of the execution of 
all commands and to be capable of dealing with the fact that 
several instances can send commands at the same time.

A command channel  in  the PIT FED is  composed of  a 
DIM  command  and  4  status  informations  brought  through 
DIM services:

● Command: DIM command which is  a white  space 
separated  string  containing  the  command  to  be 
executed followed by all  its  parameters “command 
arg1  arg2..argN”  ex:  “write_register  0x18000 
0xDEADBEEF”

● Command  Status:  DIM  service  with  a  string 
publishing  the  execution  status  of  the  command, 
possible values are: “FINISHED”, “EXECUTING”, 
“FAILED” 

● Command  Return:  DIM  service,  an  integer 
containing the return value of the command if any. If 
the command would be reading a register this service 
would  contain,  after  finishing  the  command,  the 
actual register value.

● Command  ID:  DIM  service  integer  containing  an 
unique id for the current command being executed, 
useful  if  several  instances  send  commands  at  the 
same time

V. List Of Published Services 

Connecting the PIT hardware to the rest of the world the 
PIT FED server has to work also as one information hub of 
the system.

Counters and status registers that are written by the PIT 
hardware are made available by issuing commands to the PIT 
FED  but  data  that  are  relevant  to  the  trigger  quality  and 
overall stability of the system need to be constantly monitored 
and  to  be  forwarded  through  DIM  services  as  PVSS 
datapoints that  will  be used by the supervision layer  Finite 
State Machine (FSM). This is done by monitoring 2 sets of 
data: status of the links and status of the outputs.

A. Status of the links

There are  3 DIM services per optical link (link required, 
link status, link locked), making a total of 360 services. The 
data of these services are refreshed continuously from two set 
of registers in the Optin Board address space: the link status 
registers and the link settings register. There is one settings 
and one status register per optical link (120) in the system. 

Figure  2:  PIT  FED  Libraries  diagram: 
Fec2Rorc  is  used  to  communicate  with  the 
DLL,  Log4Cpp  for  logging,   OCCI  to 
interface with the configuration database and 
DIM  to  communicate  with  other  software 
over the network.

Fec2Rorc

DIM

Log4Cpp

OCCI

Pixel 
Trigger

Loggers

PVSS

Configuration 
database

FED 
SERVER

CTP

DDL

Ethernet



They  are  contained  inside  the  Optin  board  address  space. 
Registers 21 to 32 contain the link status registers and 33 to 
44  the  settings  registers  of  the  12  optical  links  of  the 
corresponding Optin board. Figure 3 and 4 show the format of 
these registers.

Link Required: integer service, 10 bits used for displaying 
which of the 10 FastOR channels from a link are being used in 
the trigger logic. It is read from the 10 least significant bits of 
the settings register, the mask bits, bits 0 to 9, one per FastOR 
chip.  If  one  bit  is  enabled it  means that  the  corresponding 
pixel chip will be excluded from the trigger logic. If all pixel 
chips are disabled the link is not required.

Link Locked: determines if the internal optical receiver is 
locked and getting a valid input data stream. It is read from 
the least  significant bit,  from the link status register  that  is 
forwarded by the deserializer device connected to the optical 
link  receiver  in  the  hardware.  If  a  link  is  required  by  the 
trigger logic and there is no valid input data stream the data 
taking is stopped.

Link Error: determines if  the rates of the FastOR of this 
channel  are  within  the  correct  thresholds.  In  the  hardware 
there are of 40 read/write registers where the maximum and 
minimum FastOR rates can be set: 20 for the maximum and 
minimum rates for pixels chips belonging to the inner layer of 
the  SPD and 20  for  the  maximum and minimum rates  for 
chips belonging to the outer layer. The Optin Board will then 
automatically count the incoming FastOR signals for a default 
period of  one second and if  at  least  one of  the  10 FastOR 
channels of one link gets out of the thresholds the bit number 
2 of the status register will be enabled stating that there is a 
configuration  problem  in  this  SPD  halfstave  (noise  or 
inefficiency).

B. Status of the outputs 

The same logic  is  applied  to  the  outputs  of  the  system. 
Status registers and counters of the outputs are read from the 
processing  FPGA  address  space  to  the  higher  level 
supervision layer in order to detect problems and stop the run 
if required. 

There  are  10 services  indicating the output  mode to  the 
CTP visualized  as  strings  ("normal",  "random",  "toggle"  or 
"signature"). The different modes are used for debugging of 
the CTP: normal is  the normal triggering mode, in random 
mode the corresponding output will send a random bit pattern, 
in toggle mode the output will switch polarity on every trigger 
and  in  signature  mode  the  output  will  send  a  pre-defined 

pattern on every trigger. During run mode all outputs have to 
be in “normal” mode.

10 integer services indicating the current trigger rate of the 
outputs are foreseen, this will be forwarded to the supervision 
layer in order to detect abnormalities in the trigger algorithms. 

C. FastOR Counters

One big service displays the FastOR count of all chips in 
the system (1200). Used by the SPD FED and refreshed on 
demand during FastOR Optimization DAC scans. This service 
is published due to constraints in performance during FastOR 
calibration  scans.  The  SPD FED will  loop  over  pixel  chip 
FastOR  DACS,  set  test  pulse  matrices,  send  triggers  and 
measure the FastOR rates. Due to the large number of possible 
steps of this scan (minimum of 4*8 bit DACs, 3 test  pulse 
matrices  :  3*2564  =12.9*109).  The  SPD  FED  will  send  a 
command  to  start  the  measurements  on  the  PIT  FED  and 
retrieve the data in one big array instead of issuing several 
read counters commands.

VI. Command Line Interface

Using the high level architecture of the FED server allows 
sending commands directly through a command line interface. 
This feature is managed by the pit_keyboard class. It uses the 
“termios.h”  and  “poll.h”  unix  C libraries  to  scan  from the 
keyboard  input  without  stopping  the  execution  loop  of  the 
FED server. It is able to perform normal tasks and commands 
from other sources at the same time while the operator types 
commands in the PIT FED console.

The  command  structure  is  the  same  as  for  the  DIM 
commands, feedback of the execution status is available by 
following one of the log channels of the FED.

The command line interface was extremely useful during 
the  early  commissioning  phase  for  testing  the  hardware 
features  and to perform bit  error  rate  measurements  on the 
system.

VII. The PIT FED Server Implementation

In  order  to  address  problems  like  the  long  term 
maintenance,  robustness  and  scalability  for  the  PIT  FED 
server a pure C++ object-oriented paradigm modelling parts 
of the hardware was chosen. There was a heavy investment in 
encapsulation  where  classes  provide  interfaces  hiding 
hardware  related  data  while  providing  high  level 
functionalities. C++ exceptions for error management and the 
Standard Template Library (STL) [18] whenever possible was 
used.  This  proved  to  be  an  effective  way  of  managing 
complexity  increasing  code  robustness  without  hindering 
performance.

Figure  4:  Link  Status  register 
format.
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Figure 3: Link Settings register format. 
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A. Main Classes Developed

1. PIT Communication Class

The pit_comm class is positioned at the lower level of the 
class  architecture.  It  is  used to  manage the  communication 
through the DDL. It is a singleton [19] meaning that there is 
only one instance of the class in the project and its used by 
almost  all  other  classes  in  this  architecture.  It  is  an  object 
oriented wrapper around Fec2Rorc functions. Status bits are 
read  automatically  in  all  transactions.  All  data  sent  to  the 
hardware are read back and verified. Exceptions are thrown if 
any error is detected.

The PIT communication class summary:
● manages the communication with the hardware 
● a wrapper around the Fec2Rorc functions
● checks status bits automatically
● write followed by a read for verification 
● one instance used by all hardware classes (singleton)
● throws exceptions on error detection  

2. PIT Configuration Class 

The  pit_configuration  class  is  designed  to  supply 
configuration data to all other classes. It manages the access to 
the  oracle  database  or  to  configuration  files.  It  is  also  a 
singleton having only one instance of this classe in the project 
supplying services to several other instances/classes.

The PIT configuration class summary:
● manages access to database or to configuration files
● one instance used by all classes (singleton)

3. PIT Driver Top Level Class

The  pit_driver  class  is  the  higher  level  instance  of  all 
hardware related classes and contains collections of all other 
driver classes (processing FPGA, control FPGA, Optin boards 
etc.). It is capable of parsing the commands received from the 
DIM or from the command line interface and forwards them 
to  the  correct  instances.  This  includes  bit  error  rate  tests, 
measurement  and  realignment  of  all  phases,  finding  noisy 

FastOR channels and management of all global operations of 
the software.

The PIT Driver top level class summary:
● higher instance of the driver class
● has collections of all other driver classes (processing 

FPGA, control FPGA, Optin boards classes)
● manages  commands  coming  from  the  different 

instances
● performs global operations in the system

4. Hardware modelling classes

 
The  pit_driver_ProcFPGA,  pit_driver_ControlFpga, 

pit_driver_OptinBoard,  pit_driver_Optical_link  and 
pit_driver_FoChannel are classes that were designed to model 
the  existing  hardware  devices  with  the  same  name.  They 
provide  high  level  methods  to  access  functionalities  of  the 
devices  they  represent  hiding  the  hardware  related 
implementation. They are self contained: they include inside 
them the means for communicating with the hardware and all 
memory addresses and information needed to keep track of 
the status of the device. They can publish status information 
via DIM services if needed. They are safe, they verify the data 
and throw exceptions if needed. 

For  instance  the  pit_driver_ProcFPGA  class  offers 
methods  to  fully  configure  the  output  algorithms  of  the 
system, the pit_driver_Optical_link class displays when a link 
is locked, is required or if it is in error.

PIT driver hardware classes summary:
● they model existing hardware devices with the same 

name
● they  provide  high  level  functionalities  hiding 

memory  addresses,  registers  and  hardware  related 
issues

● they are self contained
● they are included inside the pit_driver class
● they  are  safe:  they  verify  the  data  and  throw 

exceptions

B. Extension of Existing Frameworks

There was an extension of existing frameworks namely in 
Log4Cpp::DimAppender  and 
run_time_error::pit_comm_error classes.

In the Log4Cpp framework a logger class can have several 
appenders and in this way it can write logging information to 
several  destinations:  log  files,  databases  or  even  system 
specific logs ex: windows event log. 

Log4Cpp::DimAppender  is  an  extension  of  the  generic 
Log4cpp::Appender. It was created through inheritance from 
the  Log4cpp::FormatedAppender  class.  It  publishes  logging 
information to the higher instances that connect to the driver 
layer through DIM. This framework provides several priority 
levels for each log message (fatal, error, warning, info, debug 
etc.) and each appender can be configured to write messages 
only above a certain level. In that way the driver layer can be 
configured to be in debug level for the FileAppender object. 
Then all log messages are written to file, or to be in warning 

Figure  5:  PIT  FED  class  structure.  Global  pit_driver  class 
containing  collections   of  other  driver  classes.  pit_comm  and 
pit_configuration classes as singletons  used by all other classes  
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level for the DimAppender object, displaying only warnings 
or errors to the operator in the supervision layer.

C. Command Parsing

The pit_driver class was designed to have a common path 
for  the  parsing  of  all  commands  from  any  source:  the 
command line interface, DIM commands from the SPD FED 
server, DIM commands from the supervision layer etc. Like 
that a standard way of managing all commands with logging 
information and error handling can be created.

 It uses only C++ formatted data input/output mechanisms 
relying in the istream and ostream inherited classes operators 
“>>” and “<<” so there is no possibility of buffer overruns 
while  using  sscanf  or  sprintf,  increasing  the  stability  and 
safety of the system.

The commands are seen as “white space” separated strings 
with a command name and a variable number or arguments. 
Furthermore the way of identifying instances in the hardware 
is done only by SPD coordinates: sector, side, channel and not 
by hardware coordinates, Optin number, channel. This makes 
the commands more easy to remember and more user friendly.

D. Error Handling

The error handling is a critical part of the development of 
any  project.  This  software  makes  an  extensive  use  of  C++ 
exceptions for error handling. A special pit_comm_error class 
which  is  a  extension  of  the  run_time_error  exception  was 
developed. It is used by the system for special error handling 
of  communication  errors  through  the  DDL.  It  allows  to 
automatically reset the SIU on certain types of errors.

The verification of the data and the throwing of exceptions 
in case of errors was left to the lower level classes. 

This increases:
● encapsulation: permits a bigger level of abstraction, 

the higher level instances classes do not need to be 
aware of the low level implementation of the system

● software  flexibility:  is  easier  to  replace  the  lower 
level classes by other classes

● software  scalability:  is  easy  to  add  new  kinds  of 
errors after the initial design of the system

● safety: all errors will be reported and saved the same 
way. Even some lower level system errors included 
automatically by the compiler can be caught this way

E. Documentation Generating Tools

During  the  development  of  this  software  an  automatic 
documentation generating tool called Doxygen [20] was used.

Doxygen is a documentation system for several languages 
including:  C++,  C,  PVSS  control  scripts,  VHDL,  Python, 
Ruby and many more. It is used by a large number of projects, 
it  can easily be integrated in many Integrated Development 
Environments (IDE) for instance eclipse. It can generate on-
line  documentation  in  HTML,  MS-Word  rich  text  format 
documents,  Latex, compressed HTML, PostScript, PDF and 
Unix man pages. The documentation is extracted directly from 
the source files through specially defined comments and also 
by the code structure displaying the relationship between the 

various  elements,  dependency  graphs,  inheritance  diagrams 
and  collaboration  diagrams  which  are  all  generated 
automatically. 

This proved to be very useful to quickly find the way in 
large source distributions and increased good practices in 
commenting code and consistence in documentation.

VIII. Conclusions 

The PIT FED server was integrated into ALICE DCS and 
is  in  stable  production  phase.  It  has  been  running  stably 
without any crash for several months and it performes already 
many of the high level functions required. In particular the bit 
error rate  measurements on the hardware and the automatic 
finding  of  noisy  FastOR  channels  were  extremely  useful 
during the early commissioning phase as well as the command 
line interface.

The highly modular high level  class structure proved to 
increase  scalability  and  robustness,  to  reduce  maintenance 
issues and does not hinder the performance of the system.

Automatic  documentation  tools  and  modern  integrated 
development environments were used during the development 
phase.

The PIT FED successfully maps all PIT hardware features 
while publishing the status information for FastOR tuning. It 
calculates the trigger  quality  and provides the higher level 
FSM information to recognize errors conditions.
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