17 research outputs found

    Anderson's disease/chylomicron retention disease in a Japanese patient with uniparental disomy 7 and a normal SAR1B gene protein coding sequence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anderson's Disease (AD)/Chylomicron Retention Disease (CMRD) is a rare hereditary hypocholesterolemic disorder characterized by a malabsorption syndrome with steatorrhea, failure to thrive and the absence of chylomicrons and apolipoprotein B48 post-prandially. All patients studied to date exhibit a mutation in the <it>SAR1B </it>gene, which codes for an essential component of the vesicular coat protein complex II (COPII) necessary for endoplasmic reticulum to Golgi transport. We describe here a patient with AD/CMRD, a normal <it>SAR1B </it>gene protein coding sequence and maternal uniparental disomy of chromosome 7 (matUPD7).</p> <p>Methods and Results</p> <p>The patient, one of two siblings of a Japanese family, had diarrhea and steatorrhea beginning at five months of age. There was a white duodenal mucosa upon endoscopy. Light and electron microscopy showed that the intestinal villi were normal but that they had lipid laden enterocytes containing accumulations of lipid droplets in the cytoplasm and lipoprotein-size particles in membrane bound structures. Although there were decreased amounts in plasma of total- and low-density lipoprotein cholesterol, apolipoproteins AI and B and vitamin E levels, the triglycerides were normal, typical of AD/CMRD. The presence of low density lipoproteins and apolipoprotein B in the plasma, although in decreased amounts, ruled out abetalipoproteinemia. The parents were asymptomatic with normal plasma cholesterol levels suggesting a recessive disorder and ruling out familial hypobetalipoproteinemia. Sequencing of genomic DNA showed that the 8 exons of the <it>SAR1B </it>gene were normal. Whole genome SNP analysis and karyotyping revealed matUPD7 with a normal karyotype. In contrast to other cases of AD/CMRD which have shown catch-up growth following vitamin supplementation and a fat restricted diet, our patient exhibits continued growth delay and other aspects of the matUPD7 and Silver-Russell Syndrome phenotypes.</p> <p>Conclusions</p> <p>This patient with AD/CMRD has a normal <it>SAR1B </it>gene protein coding sequence which suggests that factors other than the SAR1B protein may be crucial for chylomicron secretion. Further, this patient exhibits matUPD7 with regions of homozygosity which might be useful for elucidating the molecular basis of the defect(s) in this individual. The results provide novel insights into the relation between phenotype and genotype in these diseases and for the mechanisms of secretion in the intestine.</p

    The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholesterol homeostasis and xenobiotic metabolism are complex biological processes, which are difficult to study with traditional methods. Deciphering complex regulation and response of these two processes to different factors is crucial also for understanding of disease development. Systems biology tools as are microarrays can importantly contribute to this knowledge and can also discover novel interactions between the two processes.</p> <p>Results</p> <p>We have developed a low density Sterolgene v0 cDNA microarray dedicated to studies of cholesterol homeostasis and drug metabolism in the mouse. To illustrate its performance, we have analyzed mouse liver samples from studies focused on regulation of cholesterol homeostasis and drug metabolism by diet, drugs and inflammation. We observed down-regulation of cholesterol biosynthesis during fasting and high-cholesterol diet and subsequent up-regulation by inflammation. Drug metabolism was down-regulated by fasting and inflammation, but up-regulated by phenobarbital treatment and high-cholesterol diet. Additionally, the performance of the Sterolgene v0 was compared to the two commercial high density microarray platforms: the Agilent cDNA (G4104A) and the Affymetrix MOE430A GeneChip. We hybridized identical RNA samples to the commercial microarrays and showed that the performance of Sterolgene is comparable to commercial arrays in terms of detection of changes in cholesterol homeostasis and drug metabolism.</p> <p>Conclusion</p> <p>Using the Sterolgene v0 microarray we were able to detect important changes in cholesterol homeostasis and drug metabolism caused by diet, drugs and inflammation. Together with its next generations the Sterolgene microarrays represent original and dedicated tools enabling focused and cost effective studies of cholesterol homeostasis and drug metabolism. These microarrays have the potential of being further developed into screening or diagnostic tools.</p

    Optimizing spotting solutions for increased reproducibility of cDNA microarrays

    No full text
    The ability to extract meaningful information from transcriptome technologies such as cDNA microarrays relies on the precision, sensitivity and reproducibility of the measured values for a given gene across multiple samples. Given the lack of a ‘gold standard’ for the production of microarrays using current technologies, there is a high degree of variation in the quality of data derived from microarray experiments. Poor reproducibility not only adds to the cost of a given study but also leads to data sets that are difficult to interpret. For glass slide DNA microarrays, much of this variation is introduced systematically, during the spotting, or deposition, of the DNA onto the slide surface. In order to reduce this type of systematic variation we tested spotting solutions containing different detergent additives in the presence of one of two different denaturants and determined their effect on spot quality. We show that spotting cDNA in a solution consisting of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) in the presence of formamide or dimethyl sulfoxide yields spots of superior quality in terms of morphology, size homogeneity and signal reproducibility, as well as overall intensity, when used with popular, commercially available slides

    A head and neck cancer tumor response-specific gene signature for cisplatin, 5-fluorouracil induction chemotherapy fails with added taxanes.

    Get PDF
    BACKGROUND: It is a major clinical challenge to predict which patients, with advanced stage head and neck squamous cell carcinoma, will not exhibit a reduction in tumor size following induction chemotherapy in order to avoid toxic effects of ineffective chemotherapy and delays for instituting other therapeutic options. Further, it is of interest to know to what extent a gene signature, which identifies patients with tumors that will not respond to a particular induction chemotherapy, is applicable when additional chemotherapeutic agents are added to the regimen. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes that predict tumor resistance to induction with cisplatin/5-fluorouracil (PF) or PF and a taxane, we analyzed patient tumor biopsies with whole genome microarrays and quantitative reverse transcriptase-PCR (TLDA) cards. A leave one out cross-validation procedure allowed evaluation of the prediction tool. A ten-gene microarray signature correctly classified 12/13 responders and 7/10 non-responders to PF (92% specificity, 82.6% accuracy). TLDA analysis (using the same classifier) of the patients correctly classified 12/12 responders and 8/10 non-responders (100% specificity, 90.9% accuracy). Further, TLDA analysis correctly predicted the response of 5 new patients and, overall, 12/12 responders and 13/15 non-responders (100% specificity, 92.6% accuracy). The protein products of the genes constituting the signature physically associate with 27 other proteins, involved in regulating gene expression, constituting an interaction network. In contrast, TLDA-based prediction (with the same gene signature) of responses to induction with PF and either of two taxanes was poor (0% specificity, 25% accuracy and 33.3% specificity, 25% accuracy). CONCLUSIONS/SIGNIFICANCE: Successful transfer of the microarray-based gene signature to an independent, PCR-based technology suggests that TLDA-based signatures could be a useful hospital-based technology for determining therapeutic options. Although highly specific for tumor responses to PF induction, the gene signature is unsuccessful when taxanes are added. The results illustrate the subtlety in developing "personalized medicine"

    Representative HES, p16 and HPV staining of biopsies from NR and CCR individuals.

    No full text
    <p>HES-NR and HES CCR correspond to hematoxylin-eosin-safran staining of representative non-responder and complete clinical responder individuals, respectively, and IHC-p16 and HIS-oncogenic HPV correspond to representative positive immunohistochemistry for the p16 antigen (brown staining) and hybridization <i>in situ</i> for oncogenic HPV DNA (blue punctate nuclear staining), respectively. The bar represents 40 microns in the upper panels and 20 microns in the lower panels.</p

    Patient Characteristics.

    No full text
    <p>Abbreviations: *Age at diagnosis; <sup>+</sup>Response to induction therapy, CCR, complete clinical responder; NR, non-responder; <b><sup>†</sup></b> Alive (A) or Deceased (D) in 2009 ; MA, microarray; TLDA, Taqman low density array card; PF, Cisplatin/5FU; T1PF, Cisplatin/5FU/Paclitaxel; T2PF, Cisplatin/5FU /Docetaxel.</p

    Statistical Summary for 10 Gene Predictor.

    No full text
    *<p>The samples in this group contained all but one of the samples analyzed by MA. **Samples in this group contained the 5 additional samples analyzed by TLDA that were not analyzed by MA.</p
    corecore