13,656 research outputs found

    Negative Interactions in Irreversible Self-Assembly

    Full text link
    This paper explores the use of negative (i.e., repulsive) interaction the abstract Tile Assembly Model defined by Winfree. Winfree postulated negative interactions to be physically plausible in his Ph.D. thesis, and Reif, Sahu, and Yin explored their power in the context of reversible attachment operations. We explore the power of negative interactions with irreversible attachments, and we achieve two main results. Our first result is an impossibility theorem: after t steps of assembly, Omega(t) tiles will be forever bound to an assembly, unable to detach. Thus negative glue strengths do not afford unlimited power to reuse tiles. Our second result is a positive one: we construct a set of tiles that can simulate a Turing machine with space bound s and time bound t, while ensuring that no intermediate assembly grows larger than O(s), rather than O(s * t) as required by the standard Turing machine simulation with tiles

    Size versus truthfulness in the house allocation problem

    Get PDF
    We study the House Allocation problem (also known as the Assignment problem), i.e., the problem of allocating a set of objects among a set of agents, where each agent has ordinal preferences (possibly involving ties) over a subset of the objects. We focus on truthful mechanisms without monetary transfers for finding large Pareto optimal matchings. It is straightforward to show that no deterministic truthful mechanism can approximate a maximum cardinality Pareto optimal matching with ratio better than 2. We thus consider randomized mechanisms. We give a natural and explicit extension of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the House Allocation problem where preference lists can include ties. We thus obtain a universally truthful randomized mechanism for finding a Pareto optimal matching and show that it achieves an approximation ratio of eovere-1. The same bound holds even when agents have priorities (weights) and our goal is to find a maximum weight (as opposed to maximum cardinality) Pareto optimal matching. On the other hand we give a lower bound of 18 over 13 on the approximation ratio of any universally truthful Pareto optimal mechanism in settings with strict preferences. In the case that the mechanism must additionally be non-bossy, an improved lower bound of eovere-1 holds. This lower bound is tight given that RSDM for strict preference lists is non-bossy. We moreover interpret our problem in terms of the classical secretary problem and prove that our mechanism provides the best randomized strategy of the administrator who interviews the applicants

    MALAT1 Long Non-Coding RNA: Functional Implications

    Get PDF
    The mammalian genome is pervasively transcribed and the functional significance of many long non-coding RNA (lncRNA) transcripts are gradually being elucidated. Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is one of the most well-studied lncRNAs. MALAT1 is a highly conserved nuclear retained lncRNA that is abundantly expressed in cells and tissues and has been shown to play a role in regulating genes at both the transcriptional and post-transcriptional levels in a context-dependent manner. However, Malat1 has been shown to be dispensable for normal development and viability in mice. Interestingly, accumulating evidence suggests that MALAT1 plays an important role in numerous diseases including cancer. Here, we discuss the current state-of-knowledge in regard to MALAT1 with respect to its function, role in diseases, and the potential therapeutic opportunities for targeting MALAT1 using antisense oligonucleotides and small molecules

    Quantum computing on long-lived donor states of Li in Si

    Full text link
    We predict a gigantically long lifetime of the first excited state of an interstitial lithium donor in silicon. The nature of this effect roots in the anomalous level structure of the {\em 1s} Li manifold under external stress. Namely, the coupling between the lowest two states of the opposite parity is very weak and occurs via intervalley phonon transitions only. We propose to use these states under the controlled ac and dc stress to process quantum information. We find an unusual form of the elastic-dipole interaction between %the electronic transitions in different donors. This interaction scales with the inter-donor distance RR as R3R^{-3} or R5R^{-5} for the transitions between the states of the same or opposite parity, respectively. The long-range R3R^{-3} interaction provides a high fidelity mechanism for 2-qubit operations

    An investigation of Fe XV emission lines in solar flare spectra

    Full text link
    Previously, large discrepancies have been found between theory and observation for Fe XV emission line ratios in solar flare spectra covering the 224-327 A wavelength range, obtained by the Naval Research Laboratory's S082A instrument on board Skylab. These discrepancies have been attributed to either errors in the adopted atomic data or the presence of additional atomic processes not included in the modelling, such as fluorescence. However our analysis of these plus other S082A flare observations (the latter containing Fe XV transitions between 321-482 A), performed using the most recent Fe XV atomic physics calculations in conjunction with a CHIANTI synthetic flare spectrum, indicate that blending of the lines is primarily responsible for the discrepancies. As a result, most Fe XV lines cannot be employed as electron density diagnostics for solar flares, at least at the spectral resolution of S082A and similar instruments (i.e. ~ 0.1 A). An exception is the intensity ratio I(321.8 A)/I(327.0 A), which appears to provide good estimates of the electron density at this spectral resolution.Comment: 6 pages, 3 figures, Astronomy & Astrophysics, in pres

    Research Infrastructure Challenges for Graduate Programs in STEM Disciplines at Minority Institutions

    Get PDF
    It is much more challenging to perform experimental research functions at many minority institutions, because of lack of adequate research infrastructure. This is especially true if one wishes to initiate and implement masters and doctoral degree program in physics. In the present paper, an attempt is made to discuss the various hurdles encountered by the authors in the establishment of Master's and Doctoral degree programs in physics at one of the HBCUs (Historically Black Colleges and Universities). The department got no special or necessary treatment and faculty members are asked to teach as much course work as any other undergraduate department on the campus. It was very hard to convince university administration that giving less teaching load to research producing department faculty, shall culminate in abundant funding for the future years. This scenario created an extra heavy pressure on the faculty to continue the program. Some of the challenges included the resistance of some faculty and administrators to change, lack of sufficient release time for research producing faculty, and potential variation in funding or support with changes in the state education budget proration or members of the administration. In spite of the indirect cost recovery, very little infrastructure facilities was provided and the federal funding agencies did not want to interfere in the administration of the university. Various issues of recruiting and mentoring minority students, retention in the STEM disciplines as well as research infrastructure challenges at an HBCU university are presented

    Approximation Algorithms for the Max-Buying Problem with Limited Supply

    Full text link
    We consider the Max-Buying Problem with Limited Supply, in which there are nn items, with CiC_i copies of each item ii, and mm bidders such that every bidder bb has valuation vibv_{ib} for item ii. The goal is to find a pricing pp and an allocation of items to bidders that maximizes the profit, where every item is allocated to at most CiC_i bidders, every bidder receives at most one item and if a bidder bb receives item ii then pivibp_i \leq v_{ib}. Briest and Krysta presented a 2-approximation for this problem and Aggarwal et al. presented a 4-approximation for the Price Ladder variant where the pricing must be non-increasing (that is, p1p2pnp_1 \geq p_2 \geq \cdots \geq p_n). We present an e/(e1)e/(e-1)-approximation for the Max-Buying Problem with Limited Supply and, for every ε>0\varepsilon > 0, a (2+ε)(2+\varepsilon)-approximation for the Price Ladder variant

    Bulk Crystal Growth of Piezoelectric PMN-PT Crystals Using Gradient Freeze Technique for Improved SHM Sensors

    Get PDF
    There has been a growing interest in recent years in lead based perovskite ferroelectric and relaxor ferroelectric solid solutions because of their excellent dielectric, piezoelectric and electrostrictive properties that make them very attractive for various sensing, actuating and structural health monitoring (SHM) applications. We are interested in the development of highly sensitive and efficient PMN-PT sensors based on large single crystals for the structural health monitoring of composite materials that may be used in future spacecrafts. Highly sensitive sensors are needed for detection of defects in these materials because they often tend to fail by distributed and interacting damage modes and much of the damage occurs beneath the top surface of the laminate and not detectable by visual inspection. Research is being carried out for various combinations of solid solutions for PMN-PT piezoelectric materials and bigger size crystals are being sought for improved sensor applications. Single crystals of this material are of interest for sensor applications because of their high piezoelectric coefficient (d33 greater than 1700 pC/N) and electromechanical coefficients (k33 greater than 0.90). For comparison, the commonly used piezoelectric ceramic lead zirconate titanate (PZT) has a d33 of about 600 pC/N and electromechanical coefficients k33 of about 0.75. At the present time, these piezoelectric relaxor crystals are grown by high temperature flux growth method and the size of these crystals are rather small (~3x4x5 mm(exp 3). In the present paper, we have attempted to grow bulk single crystals of PMN-PT in a 2 inch diameter platinum crucible and successfully grown a large size crystal of 67%PMN-33%PT using the vertical gradient freeze technique with no flux. Piezoelectric properties of the grown crystals are investigated. PMN-PT plates show excellent piezoelectric properties. Samples were poled under an applied electric field of 5 kV/cm. Dielectric properties at a frequency of 1 kHz are examined. The grown PMN-PT crystals show typical relaxor dielectric properties. Additionally, the thermal properties of the sample are tested. The results are in good agreement with those found in the literature and some are reported for the first time

    Neutral Pions with Large Transverse Momentum in d+Au and Au+Au Collisions

    Full text link
    Measurements of transverse-momentum p_T spectra of neutral pions in Au+Au and d+Au collisions at sqrt{s_NN}=200 GeV and 62.4 GeV by the PHENIX experiment at RHIC in comparison to p+p reference spectra at the same sqrt{s_NN} are presented. In central Au+Au collisions at sqrt{s_NN}=200 GeV a factor 4-5 suppression for neutral pions and charged hadrons with p_T > 5 GeV/c is found relative to the p+p reference scaled by the nuclear overlap function . In contrast, such a suppression of high-p_T particles is absent in d+Au collisions independent of the centrality of the collision. To study the sqrt{s_NN} dependence of the suppression Au+Au collisions at sqrt{s_NN}=200 GeV and 62.4 GeV are compared.Comment: 7 pages, 5 figures, presented at Hot Quarks 2004, Taos, N
    corecore