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Abstract: The mammalian genome is pervasively transcribed and the functional significance of many
long non-coding RNA (lncRNA) transcripts are gradually being elucidated. Metastasis Associated
Lung Adenocarcinoma Transcript 1 (MALAT1) is one of the most well-studied lncRNAs. MALAT1 is a
highly conserved nuclear retained lncRNA that is abundantly expressed in cells and tissues and has
been shown to play a role in regulating genes at both the transcriptional and post-transcriptional
levels in a context-dependent manner. However, Malat1 has been shown to be dispensable for
normal development and viability in mice. Interestingly, accumulating evidence suggests that
MALAT1 plays an important role in numerous diseases including cancer. Here, we discuss the
current state-of-knowledge in regard to MALAT1 with respect to its function, role in diseases, and the
potential therapeutic opportunities for targeting MALAT1 using antisense oligonucleotides and
small molecules.
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1. Introduction

The eukaryotic genome is transcribed into tens of thousands of non-coding RNAs adding
additional complexity to the regulatory framework of cells and organisms. Long non-coding RNAs
(lncRNAs) are emerging as a critical class of transcripts participating in a wide range of cellular
functions. The current Gencode annotation estimates that there are at least 17,952 lncRNA genes
(48,438 transcripts) in humans and 13,197 lncRNA genes (18,864 transcripts) in mice [1]. These genes are
transcribed by RNA polymerase II and exhibit classical promoter and enhancer elements. The majority
are capped, spliced, and polyadenylated, although some are single exon transcripts. Many lncRNAs
undergo alternative pre-mRNA splicing and/or alternative cleavage and polyadenylation leading to
multiple isoforms from the same locus [2,3]. While almost all eukaryotic species encode lncRNA genes,
conservation of lncRNAs has been a topic of intense debate for over a decade [4–6]. Many lncRNAs
show poor sequence level conservation, with some of them demonstrating structural conservation
to some degree. In many instances, orthologs are identified by syntenic conservation followed by
functional rescue experiments [7].

Despite the large number of annotated lncRNAs, a large number (>80%) are expressed at very low
levels, few transcripts per cell, and the majority of these transcripts are restricted to just one or a few
cell types and/or specific developmental stages or physiologic conditions [8,9]. In addition to cell type
specific expression, many lncRNAs also display a specific sub-cellular localization being restricted
to cytoplasmic or nuclear compartments or association with specific organelles, such as polycomb
bodies, stress granules, nuclear speckles, paraspeckles, etc. [10]. More recent evidence suggests that
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lncRNAs actively contribute to phase separation in large ribonucleoprotein complexes giving rise
to membrane-less organelles inside the cell [11–14]. Given the remarkable diversity of this class of
RNAs, it is reasonable to envision that they contribute in a structural, functional, and/or regulatory
capacity in a wide range of cellular/nuclear processes [15]. Metastasis Associated Lung Adenocarcinoma
Transcript 1 (MALAT1) is one of the most widely studied nuclear restricted lncRNAs that has gained
much attention in recent years due to its abundance, rather ubiquitous expression, and apparent role in
various disease manifestations. Here, we discuss the current state-of-knowledge in regard to MALAT1
function and its putative role in several disease states, including cancer.

2. MALAT1–Basic Characteristics

MALAT1, also known as Nuclear Enriched Abundant Transcript 2 (NEAT2) [16] was first identified
in a microarray screen of tumors from patients with non-small cell lung cancer, and was found to
be upregulated in the tumors with a higher propensity to metastasize [17]. The MALAT1 gene is
encoded on human chromosome 11q13.1 and mouse chromosome 19qA. It is located in a gene dense
region with a very high syntenic evolutionary conservation [8]. MALAT1 exhibits a remarkable
sequence conservation with greater than 50% overall conservation in vertebrates and greater than 80%
conservation at the 3′ end of the transcript [18–20]. This is one of the key distinguishing features of
MALAT1 as very few lncRNAs show such a high level of evolutionary conservation. Less than 10%
of all lncRNAs show exonic as well as structural conservation equivalent to that of protein coding
genes [21,22]. The MALAT1 transcript has been confirmed as a non-coding RNA as it exhibits low
protein-coding potential using two independent coding potential calculating algorithms CPC2 [23]
and CPAT [24].

Human MALAT1 is ~8.7 knt long, whereas the mouse RNA is 6.7 knt long [8]. It is transcribed
by RNA polymerase II and its promoter has an accessible open chromatin architecture, which has
been shown in several high-throughput studies and DNAse sensitivity assays [8]. The steady state
expression level of MALAT1 is very high and is comparable to highly transcribed housekeeping genes,
such as β-Actin [8]. Further, MALAT1 is ubiquitously expressed across all tissues with an average
median expression of about 150 TPM (transcripts per million) with highest expression in ovaries with
a median expression of 287 TPM [25]. The abundance of MALAT1 in cells is likely the consequence of
strong promoter activity coupled with increased stability of the transcribed RNA [26,27]. MALAT1 was
originally classified as an intron-less transcript with a genomically-encoded poly A tract. However,
with a number of deep sequencing efforts, several alternatively spliced isoforms and transcripts with
alternative transcription start sites have been identified that are expressed during different physiological
states such as cancer [8,28]. In addition, a natural antisense transcript TALAM1 has also been identified
and has been suggested to play a role in a feed-forward positive regulatory loop to maintain the high
cellular levels of MALAT1 and contribute to its stability [29]. Interestingly, simultaneous knockdown
of both MALAT1 and TALAM1 in breast cancer cells led to a stronger, synergistic decrease in migration
and invasion of these cells and reduced metastasis to the lungs in a mouse model [30].

The MALAT1 primary transcript is processed to yield the well characterized nuclear retained
MALAT1 transcript, and from its 3′ end a tRNA-like small RNA [27]. The biogenesis of the small RNA
is mediated by the tRNA processing machinery, RNase P and RNase Z. The 61-nucleotide tRNA- like
MALAT1-associated small cytoplasmic RNA (mascRNA) is exported to the cytoplasm [27]. The resultant
3′ end of the nuclear MALAT1 transcript post-processing is not polyadenylated, however, it contains
a genomically-encoded poly(A)-rich stretch which pairs with an upstream U-rich region and then
adopts a unique triple helical confirmation [31–34]. This triple helical structure was first identified in
the PAN (polyadenylated nuclear) RNA produced by the human oncogenic Kaposi sarcoma-associated
γ-herpesvirus (KSHV) PAN RNA [35,36]. The only other human or mouse RNA that exhibits such a
structure is the ~20 knt Men-β (NEAT1_2) RNA [33,34]. The triple helical structure has been shown
to confer stability and nuclear localization to MALAT1 in the absence of a true poly(A) tail and has
been shown to bind several RNA binding proteins (RBPs) including METTL16 which is an m6A RNA
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methyl-transferase [33,37]. Specific triplex-disrupting mutations lead to MALAT1 degradation and loss
of nuclear accumulation [38]. Further, a class of RNAs containing a similar 3′ end including a triple helix
structure have been identified in several other species including lizards, where they have been shown
to play a role in piRNA biogenesis in testicular cells [32]. Taken together, the MALAT1 locus displays
remarkable evolutionarily conserved secondary and tertiary structural features and an unusual 3′

end processing mechanism. It is not fully apparent whether the full length MALAT1 RNA with its 3′

end triplex structure, the processed tRNA-like RNA, and the natural antisense RNA have a concerted
mechanism of action or if each component derived from this interesting locus has a disparate function.
Further, high-throughput chemical mapping experiments have highlighted extensive epi-transciptomic
changes in the MALAT1 transcript, for example, m6A, pseudouridylation and 5-methyl cytosine [39–41].
It has been shown that the addition of m6A at the A2577 position could destabilize the hairpin stem of
MALAT1, making it accessible for RNA-binding proteins such as HNRNPC [42]. Additional detailed
molecular studies elucidating the transcriptional and post-transcriptional regulation of the MALAT1
locus will address these issues and allow us to further understand the regulation and function of the
MALAT1 locus.

3. MALAT1 Localization

MALAT1 is a nuclear retained RNA that localizes to nuclear domains known as nuclear speckles [16].
Nuclear speckles are enriched in pre-mRNA processing factors, as well as some transcription factors,
and play a critical role in coordinating transcriptional and post-transcriptional gene regulation [43].
MALAT1 has been shown to be enriched at the periphery of the nuclear speckles with pre-mRNA
splicing factors localized more internally [44]. The previously described triple-helix element and
other MALAT1 domains have been shown to facilitate the nuclear retention and localization of
MALAT1 [31,45]. Although Malat1 localizes to nuclear speckles it is not required for the formation
of nuclear speckles [16] and knockout of Malat1 has no overall effect on the assembly, number, size,
distribution, or maintenance of nuclear speckles [46]. As such Malat1 is not a candidate to play a role
in regulating the process of phase separation in the formation of nuclear speckles. Several nuclear
speckle components such as, RNPS1, SRm160, and IBP160, were found to be essential factors for the
localization of MALAT1 to nuclear speckles, and the proper localization was found to be mediated
by two distinct regions of MALAT1 (1777–3600 nt and 5185–6982 nt) [45,47]. In addition, Malat1 has
been shown to bind to several other pre-mRNA splicing factors that are enriched in nuclear speckles
such as SRSF1, SON1, hnRNPC, hnRNPH1, etc. (Figure 1) [47–49]. MALAT1 has also been shown
to modulate recruitment of splicing factors to actively transcribing loci in human cell lines [26,47,50]
thereby regulating alternative pre-mRNA splicing of a number of pre-mRNAs (Figure 1). Further,
CRISPR screening studies, identified both positive (DHX15, DDX4,2, hnRNPH1 and hnRNPK) and
negative (hnRNPA1, hnRNPL, and PCBP1) regulators of the nuclear speckle localization of MALAT1.
It was suggested that negative regulators could compete with the factors that recruit MALAT1 to
nuclear speckles thereby dissociating MALAT1 from nuclear speckles upon transcriptional inhibition
suggesting a role for MALAT1 in transcriptional regulation [51]. In addition to the above mentioned
components contributing to the localization of Malat1, recently it has been shown that a SINE element
in the Malat1 5′ end associates with HNRNPK, KHDRBS1, and TRA2A contributing to its nuclear
localization [52]. A MALAT1 SINE deletion mutant localizes diffusely in the nucleus and is frequently
transported to the cytoplasm resulting in the formation of cytotoxic insoluble TDP-43 inclusions in
both the cytoplasm and nucleus [52].
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In addition to its nuclear speckle localization, MALAT1 has also been shown to be associated with
chromatin. High-throughput chromatin-RNA binding assays such as CHART and ChIRP [53,54] have
identified MALAT1 as a highly enriched RNA in the chromatin fraction, where it has been shown to be
associated with transcriptionally active genes. In another study, MALAT1 was shown to coordinate the
relocation of genes from polycomb bodies to transcriptionally active sites in a serum responsive manner.
This mechanism was directed through binding to several members of the polycomb group proteins
such as PC2, EZH2, and SUZ12, thereby regulating the transcriptional status of a number of PRC2
target genes by relieving their repression (Figure 1) [55–57]. Further, it has been shown that MALAT1
can target CTCF binding sites and active promoters [58]. Using CHIA-PET technology, it was shown
that 3D genome organization impacts MALAT1 binding to target genes and MALAT1 binding sites
were involved in both CTCF- and RNAPII-mediated chromatin interactions [58]. Specifically, such a
long-range interaction was shown on the LTBP3 promoter which has been previously shown to be
regulated by MALAT1 [59]. Additional high-throughput experiments, such as MARGI and GRID-seq,
have also revealed extensive binding of MALAT1 to thousands of genomic loci in a cell-type specific
manner [60,61].

4. Molecular Function of MALAT1

Numerous mechanisms of action have been proposed to explain the role of MALAT1 (Figure 1) in a
wide range of physiological states (Figure 2). A significant number of studies have supported a function
for MALAT1 based on its defined subnuclear localization and have proposed that MALAT1 either
plays a role in transcription, directly or indirectly, and/or regulates alternative pre-mRNA splicing [62].
The splicing role for MALAT1 is directly related to its localization in nuclear speckles, a sub-nuclear
body enriched in pre-mRNA splicing factors [16,26,47]. A number of studies have demonstrated
altered pre-mRNA splicing upon MALAT1 knockdown in cells [47,63,64]. In addition, MALAT1 has
been shown to regulate the phosphorylation status of an SR splicing factor thereby regulating its
speckle localization and its role in alternative pre-mRNA splicing [47]. Other studies have shown that
MALAT1 may directly participate in pre-mRNA splicing of actively transcribed genes by recruiting
splicing factors to the pre-mRNA [65]. In addition to those factors described in the previous section,
MALAT1 has been shown to bind to several SR proteins such as SRSF1, SRSF3, SRSF2, and other
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RBPs, such as HNRNPL and TDP-43 [47,49,64,66,67]. Taken together these studies indicate a role for
MALAT1 directly or indirectly in the regulation of pre-mRNA splicing.

A number of studies have also shown a role for MALAT1 at the transcriptional level (Figure 1).
For example, in vivo cross-linking studies have shown MALAT1 binding to chromatin of actively
transcribing genes and regulating their expression at the transcriptional level [53]. In addition,
MALAT1 also binds to a number of transcription factors and transcriptional co-activators, such as
LTBP3, FOXO1, PC2, HMGA2, etc. [55,59,68,69]. Using RNA reverse transcription-associated trap
sequencing (RAT-seq), MALAT1 was shown to increase proliferation and migration of breast cancer cells
via binding to the EEF1A1 promoter and upregulating its expression epigenetically [70]. MALAT1 has
also been shown to epigenetically upregulate transcriptional activators of proteosome subunit genes in
multiple myeloma cells [71]. MALAT1 has been shown to bind DBC1 causing deacetylation of p53,
thus promoting cell proliferation and inhibiting cell apoptosis [49]. Overexpression or knockdown of
MALAT1 in mammalian cells under a wide range of physiological conditions influences transcriptional
changes in a context specific manner [63,70,72–75]. Based on multiple lines of evidence MALAT1
may likely influence both transcription as well as pre-mRNA splicing (Figure 1). With more recent
studies demonstrating transcription-coupled splicing in determining alternative splice-site choice and
alternative polyadenylation [76,77], it is tempting to speculate that MALAT1 may directly coordinate
these events in a context specific manner by either scaffolding the protein complexes or acting as a
chaperone targeting the transcription/pre-mRNA splicing machinery to the appropriate genes.
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In addition to influencing splicing and transcription, MALAT1 has been shown to act as a competing
endogenous RNA (ceRNA) or miRNA sponge to sequester miRNAs under various conditions (Figure 1).
For example, it has been shown that miR-125b can bind to MALAT1 to downregulate its expression
and inhibit bladder cancer development [78]. It has also been reported that MALAT1 regulates
Rac1 expression by acting as a ceRNA for miR-101b in liver fibrosis [79]. MALAT1 has also been
shown to promote development of osteosarcoma by targeting TGFA via miR-376A [80]. Further,
MALAT1 has been shown to induce EMT during endometriosis [81] and metastasis in clear cell
kidney carcinoma mouse models [82] via the miR200/Zeb axis by acting as a sponge for the miR200
family. While these studies allude to a role of MALAT1 in sequestering miRNAs, it is not clear if
this is attributed to the nuclear function of MALAT1 as the majority of these miRNAs are enriched
in the cytoplasmic compartment. Perhaps MALAT1 sequesters miRNAs in the early nuclear stage of
pre-miRNA processing as MALAT1 does not appear to shuttle between the nuclear and cytoplasmic
compartments. For a better understanding of these processes, the context of MALAT1 function and
localization needs to be more thoroughly investigated.

5. MALAT1 is Dispensable for Normal Physiology

While it is compelling to speculate that MALAT1 plays a very critical cellular function,
three independent knockout (KO) mouse models generated by different groups concluded that
loss of Malat1 did not have an impact on normal mouse physiology or development [46,83,84].
In these mouse KO models generated using different strategies, Malat1 loss did not affect the normal
development of the mice and adult mice did not exhibit any aberrant phenotypes. Zhang et al. have
reported a 1.5–2-fold upregulation of several genes neighboring Malat1 in brain tissues upon KO of
a 3.5 kb region surrounding the Malat1 promoter suggesting a cis acting role for Malat1. However,
this upregulation was not observed in other tissues, including mammary tissue (unpublished data).
A second group reported a modest down-regulation of the Neat1 transcript in intestines of Malat1 KO
mice [84]. A third group reported KO of Malat1 did not affect proliferation or cell cycle progression
in human lung or liver cancer cells. In addition, a KO Malat1 mouse did not result in any obvious
phenotype or histological abnormality [83]. One logical explanation of these findings is that there may
be functional redundancy for the Malat1 RNA under normal physiologic conditions as is the case for
many critical genes [85,86].

6. MALAT1 and Cancer

MALAT1 was initially identified as an RNA whose expression is elevated in primary lung tumor
that had a higher propensity to metastasize [17]. Since this initial study overexpression of this
lncRNA has been reported in over 20 different solid or lymphoid tumors specifically correlating its
higher expression to tumor progression and metastasis (Figure 2) [17,63,71,87–99]. Depending on
the type and stage of cancer, the relative upregulation was found be from 1.5–10 fold [17,63,100,101].
Higher expression of MALAT1 has been shown to be associated with poor prognosis in a variety of
solid cancers and hematopoietic cancers [102–105]. Additionally, MALAT1 overexpression has been
associated with metastasis in lung, breast and liver cancers [17,63,64,102]. Malat1 loss or knockdown
in a murine metastatic cancer model resulted in differentiation of primary tumors and a significant
reduction in metastasis [63]. Additionally, both Malat1 knockdown and genetic KO in a lung cancer
homing model reduced homing to the lungs of lung cancer cells [101]. Similar observations have
been reported in CRC, esophageal carcinoma, gallbladder, cervical cancer, and prostate cancer where
knockdown of MALAT1 abrogated tumor growth and/or metastasis in the respective cell line-derived
models and/or PDX mouse models [69,87,106–109]. In many of these studies MALAT1 knockdown
affected transcription and/or pre-mRNA splicing of critical genes involved in migration and cell
adhesion in addition to genes involved in critical cancer pathways. Additionally, overexpression of
the 5′ Malat1 fragment was found to be sufficient to transform mouse primary embryonic fibroblast
cells resulting in increased colony formation in soft a gar assays [110]. Interestingly, Gao et al.
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have demonstrated that expression of the Malat1 5′ region can induce metastasis in the non-metastatic
4T07 murine mammary cancer cell line suggesting a gain of function for the Malat1 5′ fragment in
promoting metastasis [111]. In addition, MALAT1 overexpression has been shown to be associated with
drug resistance in breast cancer, CRC, prostate cancer, etc. (Figure 2) [112–114]. Despite accumulating
evidence that MALAT1 plays a pro-oncogenic and pro-metastatic role in a wide range of cancers,
including mammary cancer, as discussed above, a few recent studies reported a tumor suppressor-like
role for Malat1 [74,115,116]. The significance of these later findings is unclear as they are contradictory
to a large body of data supporting a pro-oncogenic role for MALAT1. Additional studies are necessary
to clarify these differences [117].

MALAT1 is a highly-conserved noncoding RNA gene transcribed from the human 11q13 locus
which has been shown to exhibit copy number changes, translocations, or mutations in several cancer
types. MALAT1 translocation to TFEB has been reported in renal cell carcinoma [118]. Translocation
of the 5′ region of MALAT1 to Gli1 has been found to be oncogenic in an aggressive form of
Gastroblastoma [119]. Further, the MALAT1 locus was shown to exhibit tandem duplication in some
breast cancers resulting in increased dosage of the gene [120]. Apart from chromosomal aberrations in
the MALAT1 locus in cancer, WGS studies from patient tumors have found that MALAT1 is a frequently
mutated gene in breast and other cancer types [121,122]. A number of hotspot mutations have been
identified in the MALAT1 gene that are mostly clustered in the 3 kb–4.3 kb region, although the role
of such short indels and point mutations in this gene is unclear [122]. Recent PCWGA suggests that
MALAT1 mutations may be a consequence of the high level of transcription associated with the gene
and an inherently fragile genomic locus, and may not necessarily represent driver mutations [123,124].
However, additional studies are warranted to assess whether these aberrations may interfere with the
above functions of MALAT1 or represent mutations that promote tumorigenesis.

Finally, meta-analysis of transcriptomic datasets has also shown MALAT1 to be upregulated in
several cancer tissues such as lung, CRC, prostate, breast, etc. cancer compared to normal tissues [125].
Analysis of TCGA data from breast, lung, prostate, and glioma cancers have identified overexpression of
MALAT1 associated with poor prognosis and reduced metastasis-free survival [102–105]. Higher levels
of MALAT1 have also been observed in circulating RNAs, and also RNAs extracted from exosomes
from cancer patients [126–128]. MALAT1 levels in urine and urinary exosomes have been evaluated
in prostate and bladder cancer respectively for developing MALAT1 as a non-invasive prognostic
biomarker [129,130]. It is compelling that this wide range of studies have identified MALAT1 as
being strongly enriched in various body fluids of cancer patients and warrants MALAT1 to be further
evaluated as a potential prognostic or diagnostic marker. However, the specificity of such a diagnostic
assay will be challenging, as MALAT1 is also an abundant RNA in most normal tissues, which can
contribute to significant noise in such analysis.

7. MALAT1 and Stress Responses

While no apparent phenotype has been observed upon Malat1 loss in knockout mice, differential
expression of MALAT1 has been reported under various physiological stresses such as serum starvation,
hypoxia etc. [55,64,131]. Additionally, it has been shown that MALAT1 enhances glycolysis, and inhibits
gluconeogenesis, via elevated translation of the transcription factor TCF7L2 and as such also plays a
role in metabolic stress [132]. Knockout of other important genes, such as RPL, Cyclin D, etc., show a
lack of phenotype under normal conditions due to functional redundancy, whereas upon physiological
stress they manifest a phenotype [85,86]. Consistent with this hypothesis, Malat1 KO mice crossed with
breast tumor bearing models display a tumor differentiation phenotype [63]. In addition, MALAT1
localization and function has been shown to be altered during serum starvation [55]. Malat1 was
also demonstrated to be induced in kidneys of hypoxic mice [133], and Malat1 was identified as
one of the most upregulated non-coding transcripts upon hypoxia in a breast cancer cell line [134].
MALAT1 has been shown to be regulated by HIF1α, a key transcription factor during the hypoxic
response [134,135]. MALAT1 knockdown also influences the expression of proangiogenic isoforms
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of VEGFa which is a classic HIF1α regulated gene [73]. In multiple myeloma, MALAT1 was shown
to be a target of KDM3A, whose upregulation resulted in accumulation of HIF-1α, and induction of
glycolytic genes under hypoxia conditions [136]. An additional study has demonstrated that cancer
cell-specific chromatin-chromatin interactions are formed at the MALAT1 locus under hypoxic stress,
thereby implicating a novel role of MALAT1 in regulating hypoxic response in cancer [131]. Collectively,
these studies indicate a direct role for MALAT1 in hypoxic stress which is responsible for significant
pathological consequences in cancer including angiogenesis and metastasis.

MALAT1 has also been shown to play a critical role in regulating the A-NHEJ pathway during
B cell class switch recombination [137]. Further, several studies have identified MALAT1 as a
regulator of TRP53 [75,138] and knockdown of MALAT1 was shown to result in increased H2Ax
foci [75] suggesting that MALAT1 plays a more general role in the double-strand break response and
genotoxic stress. Chemotherapeutic agents are known to cause genotoxic stress and, interestingly,
MALAT1 was significantly upregulated by chemotherapeutic agents in extramedullary myeloma
suggesting that it could be a stress responsive gene [139]. MALAT1 has also been shown to be a target
for chemo-sensitization of GBM wherein it is regulated by members of the TP53 family [104,140].
Similar observations of upregulation of MALAT1 has been reported in drug resistance phenotypes
in lung, prostate and other cancers [112,141–143]. This is a rather intriguing observation as many
studies mentioned above have observed a strong correlation between MALAT1 expression and the
development of chemo-resistance in cancer. Further investigations along this line are warranted in
order to understand the role of MALAT1 in the development of the drug resistance phenotype in
cancers and to identify potential combinatorial therapeutic opportunities to target MALAT1 to augment
chemotherapeutic response.

8. MALAT1 in Other Diseases

In addition to cancer, studies have identified MALAT1 upregulation in a wide range of other
pathological indications as summarized in Figure 2 [144]. A significant number of studies have directly
implicated MALAT1 in development of diabetes and insulin signaling. An early study identified
MALAT1 upregulation in endothelial cells subjected to high glucose treatment [145]. MALAT1 was
also found to play an important role in regulating insulin sensitivity by regulating NRF2 activity
and suppressing JNK signaling with concomitant insulin-induced phosphorylation of Akt [146].
Additionally, a novel signaling nexus involving MALAT1 and SAA3 has been identified which turns
on inflammatory mediators in the endothelium in response to glucose level suggesting a role for
MALAT1 in micro- and macro-vascular complications of diabetes [145]. More recently, several studies
have identified dysregulation of MALAT1 expression in multiple pathophysiological complications of
diabetes including retinopathy, artherosclerosis, cerebrovascular disorder, renal disorders, etc. [144].
Further, molecular studies of several of these pathological indications have converged upon identifying
a deregulated inflammatory response induced by altered MALAT1 level. For example, a number
of inflammatory molecules such as TNFα and IL6 have been shown to be increased in MALAT1
upregulated cells [147]. Additionally, shRNA mediated the knockdown of MALAT1 ameliorated
the inflammatory injury after lung transplant ischemia-reperfusion by inhibiting chemotaxis of
neutrophils through p300-mediated downregulation of IL-8 [69]. Further, using Malat1 KO mice it
was demonstrated that reduced levels of Malat1 augment atherosclerotic lesion formation in mice and
are associated with human atherosclerotic disease [148]. They also showed that pro-atherosclerotic
effects observed in Malat1-/- mice were mainly caused by enhanced accumulation of hematopoietic
cells involved in inflammatory response [148].

9. Therapeutic Targeting of MALAT1

Given the diverse role of MALAT1 in cancer and other disease areas such as diabetes and
inflammation, MALAT1 is being actively investigated as a potential therapeutic target using different
modalities. Pre-clinical studies using breast and lung cancer models targeting Malat1 using antisense Gapmer
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oligonucleotides have resulted in an anti-tumor and anti-metastatic outcome in both studies [63,101]. Gapmer
oligonucleotides are short single-stranded RNA-DNA-RNA hybrids that bind to complementary RNA
sequences and cause degradation by invoking an RNaseH response [149]. Gapmers are emerging as a
promising approach to target multiple lncRNAs [62]. In addition, targeting the Malat1 and AR-v7 axis
using Malat1-short interfering RNAs (siRNAs) in enzalutamide-resistant prostate cancer cell lines and
mouse models suppressed enzalutamide-resistant prostate cancer progression [113]. Similar studies
using Malat1-targeting siRNAs have been conducted in other cancer types, such as glioblastoma, ovarian,
colorectal (CRC), gallbladder, gastric, osteosarcoma, and esophageal, etc. [88,106,107,140,142,150–152].
MALAT1 gapmer oligonucleotides conjugated to single- walled carbon nanotubes delivered systemically
into mice resulted in significant inhibition of multiple myeloma growth [153]. Further, small molecules
specifically targeting the MALAT1 triple helix structure have been identified and they lay the foundation
for new classes of anticancer therapeutics for the treatment and investigation of MALAT1-driven
cancers [154]. Together, these studies provide compelling evidence for targeting MALAT1 in multiple
cancer types to achieve a therapeutic benefit. Given that Malat1 knockout mice are healthy and fertile,
MALAT1 targeting in cancer can be a potentially viable mechanism to evade the emergence of a
drug resistant phenotype in MALAT1 elevated chemo-resistant cancers or to achieve a significant
anti-tumor and anti-metastatic effect in MALAT1 overexpressing cancers without causing any adverse
side effects to healthy tissues. Based upon the significant body of pre-clinical data MALAT1 is poised to
be targeted by antisense or small molecule drugs to impact cancer progression and other inflammatory
and metabolic disease indications.

10. Summary and Conclusions

MALAT1 breaks all of the “rules” when it comes to a lncRNA: it is highly abundant, well-conserved,
is expressed broadly among different cell types and tissues, and exhibits an unusual 3′-end processing
mechanism. As discussed in this review MALAT1 appears to function in a context-dependent manner
and as such has been implicated in a wide array of functions. Its expression level has been shown to
be altered in many different physiologic states including being upregulated in a plethora of different
cancer types, as well as exhibiting altered expression in many other diseases. One intriguing hypothesis
derived from these studies is that MALAT1 functions in a context-dependent manner, at the level
of pathways rather than individual gene(s), and as such may represent an outstanding therapeutic
target as it may impact multiple nodes of particular pathways thereby minimizing the drug resistance
problem in cancer treatment. Future studies will certainly add more to the intriguing basic biology of
MALAT1 and bring it closer to having clinical impact.
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