37 research outputs found

    Biogas Production from Co-digestion of Pennisetum Pururem cv. Pakchong 1 Grass and Layer Chicken Manure Using Completely Stirred Tank

    Get PDF
    AbstractIn this research, the production of biogas from co-digestion of Pennisetum purpureum cv. Pakchong1 grass and layer chicken manure using completely stirred tank was investigated. The experiment was defined to examine effect of the change in carbon to nitrogen (C/N) ratios and the organic loading rates (OLRs) on biogas production and system steady-state performance. Primary analyses suggested that an approximate content of grass and manure was 50: 50% by weight to achieve C/N ratio of 20 and 70: 30% by weight for C/N ratio of 30 respectively. The experimental reactor was set to operate at a fixed total solid content of 4% with two cases of C/N ratio at four different OLRs of 1.1, 1.4, 1.7 and 2.2kg VS/(m3.d). Each condition was operated for 1.5 time of reactor retention time. The result suggested that maximum steady-state methane yield of 0.27 Âą 0.01 L CH4/kg VSadded can be achieved at C/N ratio of 20 with OLR of 1.1kg VS/(m3.d). Moreover, the results also suggested that methane yield decreased for an increase in OLR. Nonetheless, the work presented herein can provide an insight information for design and operation optimization according to economical investment analysis

    Potential of Fermentable Sugar Production from Napier cv. Pakchong 1 Grass Residue as a Substrate to Produce Bioethanol

    Get PDF
    AbstractBioethanol is one of the most significant renewable fuels. The major sources of bioethanol production are food crops such as corn, sugarcane, rice, wheat and sugar beet. However, utilization of food crops to produce bioethanol could affect the food sources and disrupt the food to population ratio. To overcome these issues, the utilization of lignocellulosic materials such as wheat straw, grass and crop residues to produce bioethanol has been developed for second-generation fuel, since those resources are abundant, cheap and renewable. Napier Pakchong 1 grass (NPG) residue is a lignocellulosic waste obtained from the process of biogas production that can be used as an alternative material for bioethanol production. This research aims to study on the potential of fermentable sugar production from NPG residue. The materials were pretreated with different concentrations of sodium hydroxide (NaOH), followed by enzymatic hydrolysis for saccharification. The results suggested that pretreatment with 3.0% (w/v) NaOH solution at 121ĖŠC for 60 minutes provided the highest lignin removal of 86.1% (w/w) and enriched cellulose fraction from 36.4 to 75.6% (w/w). The enzymatic hydrolysis was conducted by varying enzyme loading volume and total solid contents (TS) at pH 4.8, 50ĖŠC for 72h. The hydrolysis with enzyme loading volume of 2.0 ml/g of substrate and 10% (w/v) of TS were optimal for saccharification giving the reducing sugar yield of 768 mg/g of pretreated biomass or equal to 64 g/L and glucose yield of 522 mg/g of pretreated biomass or equal to 43 g/L. The reducing sugar will be used as a starting material for yeast to produce bioethanol

    Optimization of hydrothermal conditioning conditions for Pennisetum purpureum x Pennisetum americanum (Napier PakChong1 grass) to produce the press fluid for biogas production

    Get PDF
    This study focused on the optimization of hydrothermal conditioning conditions for Napier PakChong1 grass to produce press fluid for biogas production. The integrated generation of solid fuel and biogas from biomass (IFBB) process was adopted to separate press fluid from the biomass. Napier PakChong1 grass was hydrothermally pretreated and then mechanically pressed. The press fluid was used for biochemical methane potential (BMP) test while the press cake could be utilized as the solid fuel. The full factorial design of experiment with center points and the Central Composite Design (CCD) were developed to obtain the best possible combination of harvesting time, grass to water ratio, temperature and soaking time for the maximum organic substance (as COD) in press fluid. It was found that the obtained model could satisfactorily predict the mass of COD in press fluid used as the model response. The optimum hydrothermal conditioning conditions were as follows; harvesting time 75 d, ratio of grass to water of 1:6 (by weight), ambient temperature (about 25°C) of the water and the soaking time of 355 min. The mass of COD obtained in these conditions was 226.42 g equating to 71.5% of the value predicted by the model (316.68 g). The microbial kinetic coefficients and biogas yield potential of press fluid at these optimum conditions were properly fitted with the modified Gompertz equation (adjusted R2= 0.995). The methane yield potential (P), the maximum methane production rate (Rm) and lag phase time (Îŧ) were 412.18 mlCH4/gVSadded, 51.47 mlCH4/gVSadded/d and 4.36 days, respectively

    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļžāļˆāļēāļāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļ­āļ—āļēāļ™āļ­āļĨāđ‚āļ”āļĒāļāļēāļĢāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™Efficiency Increasement of Biogas Production from Vinasse by Trace Element Addition

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļžāļˆāļēāļāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļ­āļ—āļēāļ™āļ­āļĨāđ‚āļ”āļĒāļāļēāļĢāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™ āđ„āļ”āđ‰āđāļāđˆ āđ€āļŦāļĨāđ‡āļ āļ™āļīāļāđ€āļāļīāļĨ āđāļĨāļ°āļŠāļąāļ‡āļāļ°āļŠāļĩ āļˆāļēāļāļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ°āļšāļšāļ‚āļ­āļ‡āļ–āļąāļ‡āļ›āļāļīāļāļĢāļ“āđŒāļŠāļ™āļīāļ”āļāļ§āļ™āļŠāļĄāļšāļđāļĢāļ“āđŒāļ‚āļ™āļēāļ” 10 āļĨāļīāļ•āļĢ āļ—āļĩāđˆāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒ 0.50–7.42 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ‹āļĩāđ‚āļ­āļ”āļĩāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ§āļąāļ™āļžāļšāļ§āđˆāļē āļĢāļ°āļšāļšāļ—āļĩāđˆāđ„āļĄāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™ (R1) āļĢāļ°āļšāļšāļ—āļĩāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™āđƒāļ™āļ—āļļāļāļ§āļąāļ™āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ°āļšāļš (R2) āļĢāļ°āļšāļšāļ—āļĩāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™āđƒāļ™āļāļēāļĢāļŦāļĄāļąāļāļĒāđˆāļ­āļĒāļ„āļĢāļąāđ‰āļ‡āđāļĢāļāļ‚āļ­āļ‡āļ—āļļāļāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒ āđ€āļĄāļ·āđˆāļ­āļĢāđ‰āļ­āļĒāļĨāļ°āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļ™āđ‰āļ­āļĒāļāļ§āđˆāļē 50% āļŦāļĢāļ·āļ­āđ€āļĄāļ·āđˆāļ­āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ›āļĢāļīāļĄāļēāļ“āļāļĢāļ”āđ„āļ‚āļĄāļąāļ™āļĢāļ°āđ€āļŦāļĒāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļ”āđˆāļēāļ‡ (VFA/Alkalinity Ratio) āļĄāļēāļāļāļ§āđˆāļē 0.3 (R3) āđāļĨāļ°āļĢāļ°āļšāļšāļ—āļĩāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™āđƒāļ™āļāļēāļĢāļŦāļĄāļąāļāļĒāđˆāļ­āļĒāļ„āļĢāļąāđ‰āļ‡āđāļĢāļāļ‚āļ­āļ‡āļ—āļļāļāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒ, āđ€āļĄāļ·āđˆāļ­āļĢāđ‰āļ­āļĒāļĨāļ°āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļ™āđ‰āļ­āļĒāļāļ§āđˆāļē 50% āļŦāļĢāļ·āļ­āđ€āļĄāļ·āđˆāļ­āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ›āļĢāļīāļĄāļēāļ“āļāļĢāļ”āđ„āļ‚āļĄāļąāļ™āļĢāļ°āđ€āļŦāļĒāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļ”āđˆāļēāļ‡ (VFA/Alkalinity Ratio) āļĄāļēāļāļāļ§āđˆāļē 0.5 (R4) āđ‚āļ”āļĒāļĄāļĩāļ­āļąāļ•āļĢāļēāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđ€āļ—āđˆāļēāļāļąāļš 198.90 Âą33.56, 165.90 Âą12.19, 229.40 Âą19.89 āđāļĨāļ° 195.44 Âą24.98 āļĄāļīāļĨāļĨāļīāļĨāļīāļ•āļĢāļ•āđˆāļ­āļāļĢāļąāļĄāļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĢāļ°āđ€āļŦāļĒāļ—āļĩāđˆāļ›āđ‰āļ­āļ™āđ€āļ‚āđ‰āļē āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ‹āļķāđˆāļ‡āļœāļĨāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļē R3 āđƒāļŦāđ‰āļœāļĨāļ”āļĩāļ—āļĩāđˆāļŠāļļāļ” āđ‚āļ”āļĒāļĢāļ°āļšāļšāļŠāļēāļĄāļēāļĢāļ–āļĢāļ­āļ‡āļĢāļąāļšāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒāđ„āļ”āđ‰āļŠāļđāļ‡āļŠāļļāļ” 4.94 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ‹āļĩāđ‚āļ­āļ”āļĩāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ§āļąāļ™ āđāļĨāļ°āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 15.33 āđ€āļĄāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļāļēāļĢāđ„āļĄāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™The objective of this study is to investigate the effects of Trace Elements (TE) addition to increase efficiency of biogas production from vinasse. Multiple experiments were conducted to obtain the optimal feeding dosage of TE, which mainly consisted of iron, nickel and zinc. Experiments were performed in 10-litre lab-scale continuous stirred tank reactors at the organic load rates of 0.50–7.42 kgCOD/m3â€Ēd. The experiments included a control group and experimental groups as follows: The control case without TE addition (R1); the experimental groups with TE addition daily during system operation (R2); intervention with TE addition at the first fermentation stage in each organic load rate when the methane percentage was lower than 50% or when the volatile fatty acid/alkalinity ratio was more than 0.3 (R3); and the intervention with TE addition at the first fermentation stage in each organic load rate; when the methane percentage was lower than 50% or when the volatile fatty acid/alkalinity ratio was greater than 0.5 (R4). Observed specific methane production was198.90 Âą33.56, 165.90 Âą12.19, 229.40 Âą19.89 and 195.44 Âą24.98 ml/gVSadded. The results showed that R3 yielded the maximum organic loading rate of 4.94 kgCOD/m3â€Ēd, with 15.33% enhanced methane production efficiency as compared with the no-treatment control group
    corecore